Development and Validation of A Model for 2-way DPF/SCR

Soo-Youl Park, Univ. of Wisconsin-Madison Chris Rutland, Univ. of Wisconsin-Madison Kushal Narayanaswamy, General Motors Yongsheng He, General Motors Steven Schmieg, General Motors

Contents

- Introduction
- Model Development for wall flow type SCR
- Validation of wall flow type SCR Model
- Application of Model –NH3 balance Monitor
- Review of test results –Effect of soot loading
- Model for soot loading effect on SCR
- Summery

Introduction

What is a 2-way DPF/SCR aftertreament device?

- Multifunctional device combining DPF and SCR
 - a. Wall flow type DPF for soot trapping and oxidation
 - b. SCR for NOx reduction

Issues

- DeNOx by SCR under wall flow type substrate
 - Model development for wall flow type SCR
 - Comparison study between flow channel type and wall flow type SCR
- Soot Filtration DeNOx performance
- Soot Oxidation DeNOx performance
 - NO₂ as a soot oxidizer and a reactant species in SCR

Model Structure

Model Development for Wall Flow Type SCR

Species Transport Equation(S.T.E)-General

$$\frac{\partial C_i}{\partial t} = -\nabla \cdot \mathbf{N_i} + R_{\nu,i}$$

where

$$\mathbf{N}_i = C_i \mathbf{v} + \mathbf{J}_i$$

$$\mathbf{J}_{\mathbf{i}} = -D_i \nabla C_i$$

To solve this equation directly

- 1. needs a lot of computer resources or solving time
- 2. is not an appropriate way for system simulation

Scaling Analysis

	Transport by	Time	Order of Value
		scale	(S)
Inlet channel	Convection along channel	L/U_{in}	~1E-2
	Diffusion along channel	L^2/D	~1E+2
	Diffusion to filter wall a/k		~1E-2
Filter wall	Convection	W/U_W	~1E-2
	Diffusion along wall thickness	W^2/D_W	~1E-3
	Diffusion to catalyst surface	d_p/k_w	~1E-3
Time scale	for external perturbation (E	Boundary	1~10
Condition variation)			

	Definition	Value
Pech	$L \cdot U_{in}/D$	~1E+4
Pew	$w \cdot u_w / D_w$	~10

Species Transport Equation (S.T.E.) -Simplified

$$\frac{\partial \boldsymbol{e}_i}{\partial t} = -\nabla \cdot \mathbf{N_i} + R_{\nu,i}$$

Quasi steady assumption at each time step even in transient problem

where

$$\mathbf{N}_i = C_i \mathbf{v} + \mathbf{y}_i$$

In the inlet channel and outlet channel (axial direction)

 $\mathbf{J_i} = -D_i \nabla C_i$

Final Form of S.T.E.

Gas Phase

I.
$$\frac{\partial}{\partial x} (uC_{b,i}) + \frac{4}{a} (u_w C_{b,i}) + \frac{4k_c}{a} (C_{b,i} - C_{wf,i}|_{y=0}) = 0$$
Inlet Channel
B.C. $x = 0$, $C_{b,i} = C_{b,i,inlet}$
II.
$$\frac{\partial}{\partial y} (u_w C_{wf,i}) - D_w \frac{\partial^2 C_{wf,i}}{\partial y^2} + k_w S(C_{wf,i} - C_{ws,i}) = 0$$
Catalytic filter wall
B.C. $y = 0$, $C_{wf,i} = C_{wf,i}|_{y=0}$ $y = w$, $\frac{\partial C_{wf,i}}{\partial y} = 0$
III. $k_w S(C_{wf,i} - C_{ws,i}) = a_s \sum_k RR(k)$
Catalytic filter wall
IV. $C_b u_w + k_c (C_{b,i} - C_{wf,i}|_{y=0}) = C_{wf,i}|_{y=0} \cdot u_w - D_w \frac{\partial C_{wf,i}}{\partial y}|_{y=0}$
Interface of Inlet channel
and Catalytic filter wall

Adsorption phase (NH₃ only)

 $\frac{d\theta}{dt} = RR(1) - RR(2) - 2RR(3) - 4RR(5) - 2RR(6) - 4RR(7) - 2RR(8)$ = net adsorption - ammonia oxidation - SCR reaction

11

Final Form of S.T.E.

$$\frac{\partial}{\partial x} \left(u^o C_{b,i}{}^o \right) + \frac{4}{a} \left(u_w C_{wf,i} \big|_{y=w} \right) = 0$$
$$C_{b,out} = \frac{1}{a \cdot u_{out}} \int 4 \left(u_w C_{wf,i} \big|_{y=w} \right) dx$$

- Diffusion through boundary layer can be ignored(wall injection)
- Convective flux only → Channel out concentration can be found by simple mass balance

Depsick et. al., Journal of Engineering for Gas Turbines and Power 2008 vol.130

Solver Development

- Total 4n+1 coupled equations and 4n+1 unknowns of C_{b,i} C_{wf,i}, C_{ws,i}, C_{wf,i}(y=0) and θ
 - 2n equations of differential equations
 - 2n equations of algebraic equations
 - One equation of differential equation $(d\theta/dt)$
- 2n differential equations are converted to algebraic equation by FVM(Finite Volume Method).

SCR Reaction and its Rate Expression

Description	Reaction Rate	Rate Expression	
ammonia adsorption ammonia desorption	RR(1) RR(2)	$RR(1) = A_1 C_{NH3} (1 - \theta)$ $RR(2) = A_2 \exp\left(\frac{-E_{A,2}}{R_u T}\right) \theta$	lodeling Ea
ammonia oxidation	RR(3)	$RR(3) = A_{s} \exp\left(\frac{-E_{A,s}}{R_{u}T}\right) C_{o2} \cdot \theta$	
NO oxidation	RR(4)	$\begin{split} & \operatorname{RR}(4) = A_4 \exp\left(\frac{-E_{A,4}}{R_u T}\right) C_{NO} \sqrt{C_{O2}} \cdot \theta - k_{4,b} C_{NO2} \\ & \text{where} \\ & k_{4,b} = A_4 \exp\left(\frac{-E_{A,4}}{R_u T}\right) / K_{eq} \text{ and} \\ & K_{eq} = \exp\left(\frac{-\Delta S}{R_u}\right) \exp\left(\frac{-\Delta H}{R_u T}\right) \end{split}$	← Non-Linear
Standard NH3 SCR	RR (5)	$RR(5) = A_5 \exp\left(\frac{-E_{A,5}}{R_u T}\right) C_{NO} \cdot \theta$	
Rapid NH₃ SCR	RR(6)	$RR(6) = A_6 \exp\left(\frac{-E_{A,6}}{R_u T}\right) C_{NO} C_{NO2} \cdot \theta$	
NH ₃ SCR with NO ₂	RR (7)	$RR(7) = A_7 \exp\left(\frac{-E_{A,7}}{R_u T}\right) C_{NO2} \cdot \theta$	Non-Linear
N ₂ O formation by SCR	RR(8)	$RR(8) = A_{g} \exp\left(\frac{-E_{A,g}}{R_{u}T}\right) C_{NO2} \cdot \theta$	

Activation Energy for Desorption

Dependence of activation energy on surface coverage 1. Linear form

$$E_{a,des} = E_{a,des0}(1 - \alpha\theta)$$

2. Exponential form

$$E_{a,des} = E_{a,desl} \exp(-\beta\theta) + E_{a,des2}$$

Validation of Model -TPD

Initial Temp. : 200degC

Initial Temp. : 250degC

Initial Temp. : 300degC

Initial Temp. : 350degC

16

TPD-NH₃ Concentration Distribution

17

Model Validation – DeNOx (Steady State)

- 1. Model is calibrated under no soot loading and α =0.9 condition
- Reaction constants for adsorption and desorption are carried over from TPD results.
- Reaction constants for RR(3) to RR(8) are calibrated to match the simulation results to experiment's

Model Validation – DeNOx (Steady State)

Parameter	Value
NO	195 ppm
NO ₂	5 ppm
NH ₃	180 ppm
S.V.	23000 (1/hr)

19

DeNOx-Species Spatial Distribution

20

Vel., Flux, and Surface coverage

Mass flux to catalytic filter wall

Monitoring Ammonia Balance

Manipulating the S.T.E for ammonia

$$\dot{N}_{in,NH3} = \dot{N}_{out,NH3} + \int a_s \frac{d\theta}{dt} dV + \int a_s \cdot 2RR(3)dV$$

$$A \qquad B \qquad C$$

$$+ \int a_s(4RR(5) + 2RR(6) + 4RR(7) + 2RR(8)) dV$$

$$D$$

- A: rate of ammonia slip
- B : net ammonia adsorption rate
- C : rate of ammonia oxidation
- D : SCR reaction rate

Test condition–NH3 Balance

Test Condition

- 1. No adsorbed ammonia initially
- 2. Constant rate of ammonia injection
- 3. Step temperature increasing at certain points

Value	
23000(1/hr)	
200 ppm	
0 ppm	
180 ppm	

Results – NH3 Balance

Outlet concentration

Ammonia Balance

Effect of Soot Deposit (Filtered Soot) on SCR Reaction

Review – Experiment(I)

2. Thermal oxidation(above 400 deg) \rightarrow soot on the filter wall

Review – Experiment(II)

Observation (II)

- 1. Deterioration of NOx reduction performance
 - 1) Only occurs at 200 and 300 degC
 - 2) Can be recovered if soot is burned out.

Conclusion (II)

- 1. At 400 degC or above, there is no soot inside the filter wall because of catalytic oxidation of soot.
- Soot deposit inside the filter wall disrupts mass transfer from fluid side to catalytic site. → reason for poor NOx conversion efficiency at 200 and 300 degC when soot exists

Model for soot deposit effect on SCR

Idea of Thiele Modulus and Effectiveness Factor can be extended to soot loading case

Diffusion-Reaction Equation for soot deposited case

For catalyst washcoat

$$0 \leq \overline{\xi} \leq \delta_{w} \quad \frac{\partial^{2}\overline{C}}{\partial\overline{\xi}^{2}} - \Phi^{2}\overline{C} = 0$$

at $\overline{\xi} = 0$, $\frac{\partial\overline{C}}{\partial\overline{\xi}} = 0$ at $\overline{\xi} = 1$, $\overline{C} = 1$

For soot deposit layer

$$\begin{split} \delta_{\mathbf{w}} &< \bar{\xi} \leq \delta_{\mathbf{s}} \quad \frac{\partial^2 \bar{C}}{\partial \bar{\xi}^2} = 0 \\ & \text{at } \bar{\xi} = 1, \qquad \bar{C} = 1 \qquad \text{at } \bar{\xi} = \frac{\delta_{\mathbf{w}}}{\delta_{\mathbf{s}}}, \qquad \bar{C} = \frac{C_{\mathbf{ws}}}{C_{\mathbf{I}}} \\ & \text{where } \bar{C} = C/C_{\mathbf{I}} \qquad \bar{\xi} = \xi/\delta_{\mathbf{w}} \quad \text{and } \Phi = \sqrt{\frac{k_{\mathbf{v}} \delta_{\mathbf{w}}^2}{D_{\mathbf{eff},\mathbf{w}}}} \quad \text{Thiele Modulus} \end{split}$$

Solution & Effectiveness Factor

Solution

$$\begin{split} \bar{C}\left(\bar{\xi}\right) &= \frac{\sinh\left(\Phi_{\mathbf{w}}\bar{\xi}\right)}{\sinh\left(\Phi_{\mathbf{w}}\right)} & \text{for } 0 \leq \bar{\xi} \leq \delta_{\mathbf{w}} \\ \bar{C}\left(\bar{\xi}\right) &= \frac{\delta_{c}(C_{\mathbf{ws}} - C_{I})}{C_{I}(\delta_{s} - \delta_{\mathbf{w}})} \bar{\xi} + \frac{C_{I}\delta_{s} - C_{\mathbf{ws}}\delta_{\mathbf{w}}}{C_{I}(\delta_{s} - \delta_{\mathbf{w}})} & \text{for } \delta_{\mathbf{w}} < \bar{\xi} \leq \delta_{s} \\ \text{where} & C_{I} &= \frac{\frac{D_{eff,s}}{(\delta_{s} - \delta_{\mathbf{w}})}}{\sqrt{D_{eff,w}k_{\mathbf{v}}} \tanh(\Phi_{\mathbf{w}}) + \frac{D_{eff,s}}{(\delta_{s} - \delta_{\mathbf{w}})}} C_{\mathbf{ws}} \end{split}$$

Effectiveness Factor

$$\begin{split} \eta_{s} &= \frac{D_{eff,s}}{k_{v}\delta_{w}} \left(\frac{\sqrt{D_{eff,w}k_{v}} \tanh(\Phi_{w})}{(\delta_{s} - \delta_{w})\sqrt{D_{eff,w}k_{v}} \tanh(\Phi_{w}) + D_{eff,s}} \right) \\ &\lim_{\delta_{s} \to \delta_{w}} \eta_{s} = \frac{\sqrt{D_{eff,w}k_{v}} \tanh(\Phi_{w})}{k_{v}\delta_{w}} = \frac{\tanh(\Phi_{w})}{\Phi_{w}} = \eta_{c} \qquad k_{app,s} = \eta_{s}k_{v} \end{split}$$

Implementation of Effectiveness Factor

Comparison of clean and soot deposit case : Simulation

Simulation and Experimental Results

Concentration of soot deposit inside the filter wall

Concentration of soot deposit : only inside the filter wall

Conclusion

- 1. Introduction of model development for wall flow type SCR
- 2. Model was validated over TPD, steady NOx reduction test case.
- 3. The results are investigated in space and they gives the insight for the utilization of catalyst.
- 4. Ammonia balance monitor \rightarrow can be applied to control model
- 5. Soot deposit inside the filter wall → Resistance to mass transfer for catalytic reaction → Decreasing overall SCR performance
- 6. Extended Thiele modulus and effectiveness factor → For effect of soot loading on SCR performance

Acknowledgement

This research work is supported by General Motors as UW-GM Collaborative Research Laboratory.

Experimental Work : Steven Schmieg

Thank You!