

Proudly Operated by Battelle Since 1965

Global Kinetic SCR Model with Two Ammonia Storage Sites April 12, 2013

MARK STEWART, CAMERON HOHIMER, GEORGE MUNTEAN, KEN RAPPÉ Pacific Northwest National Laboratory

MARUTHI DEVARAKONDA GE Power and Water

JOSH PIHL, STUART DAW Oak Ridge National Laboratory

Two-site storage suggested by **ORNL** experiments

- ORNL kinetics experiments with current Cu-CHA SCR catalyst using TPD and the CLEERS transient SCR protocol
- TPD experiments with fresh and hydrothermally aged samples suggest two types of NH₃ storage sites
 - Similar behavior has been observed with other SCR catalysts¹
- During hydrothermal aging capacity seems to shift from one type of site the other
- A two site model was developed to describe observed changes in performance

¹ Olsson, L., H. Sjövall, and R.J. Blint, "A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5". Applied Catalysis B: Environmental, 2008. 81(3–4): p. 203-217 DOI: 10.1016/j.apcatb.2007.12.011.

Catalyst aging

- We are focusing on mild to moderate aging phenomena that happen between fresh catalyst, through de-greening, and up to 6 hr at 800°C
- Studies with GM have suggested that 16 hr hydrothermal aging at 800°C is representative of 135,000 miles on vehicle²
- This may be a separate effect from the reduction in total storage capacity observed by others under more severe aging conditions

² Schmieg, S.J., S.H. Oh, C.H. Kim, D.B. Brown, J.H. Lee, C.H.F. Peden, and D.H. Kim, "Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction". *Catalysis Today*, 2012. 184(1): p. 252-261 DOI: 10.1016/j.cattod.2011.10.034.

New Cu-zeolite aging data Gordon Bartley, SWRI 2012 CLEERS Workshop

Modeling approach

- Several previously published models have tracked multiple adsorbed species and intermediates, and included fundamental reaction steps ^{3,4}
- Our goal was a simpler global kinetic model ¹ where most of the rates represent overall reactions, combining intermediate steps
- Only ammonia storage sites were included in the model, and only NH₃ coverages were tracked
- Two NH₃ storage sites were included, using a storage model similar to that proposed by Colombo et al, 2012 ⁵
- Kinetic parameters for storage are a compromise between fresh and aged datasets
- In general, our goal was the simplest model that would adequately describe data

 ³ Sjövall, H., R.J. Blint, and L. Olsson, "Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5". *Applied Catalysis B: Environmental*, 2009. 92(1–2): p. 138-153 DOI: http://dx.doi.org/10.1016/j.apcatb.2009.07.020.
 ⁴ Colombo, M., I. Nova, and E. Tronconi, "Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment". *Catalysis Today*, 2012. 197(1): p. 243-255 DOI: 10.1016/j.cattod.2012.09.002.

⁵ Colombo, M., G. Koltsakis, I. Nova, and E. Tronconi, "Modelling the ammonia adsorption-desorption process over an Fe-zeolite catalyst for SCR automotive applications". *Catalysis Today*, 2012. 188(1): p. 42-52 DOI: 10.1016/j.cattod.2011.09.002.

Model implementation

- As in most previous SCR models, PDEs are converted to ODEs using the Method of Lines and approximating the spatial derivatives
- Upwind differencing is used for advective terms
- Mat Lab is used to solve the resulting system of ODEs
- 40 axial nodes were used to model the small core in the results shown
- \triangleright O₂ concentration is considered constant
- Our current model does not include transport resistances either film resistance between channel and catalyst or resistance within the washcoat

- Experiments conducted by Josh Pihl at ORNL using the latest CLEERS transient SCR protocol
- Monolith coated with commercial Cu-CHA catalyst taken from a new vehicle
- Cores cut from monolith 2 cm diameter by 5 cm long
- 60,000 1/hr space velocity
- \blacktriangleright NO_X inlet concentration: 350 PPM
- \blacktriangleright NH₃/NO_X ratio for data shown: 1.0

NH₃ balance issues

- When outlet NH₃ concentration is integrated, some of the NH₃ originally absorbed is unaccounted for
- No O₂ present during storage experiments, so this can't be explained by the reactions in our simple model
- Loss of NH₃ was also observed recently by Colombo et al, 2012³
- Since their experiment was run in Argon, they could see some of the NH₃ coming off as N₂ at the beginning of the TPD
- There is likely some oxidation by O₂ stored while cleaning the catalyst prior to the NH₃ storage experiment

Short-term solution to imbalance issue: simple decomposition reaction

- Anaerobic decomposition of NH₃ over zeolite supported base-metal catalysts has been explored for hydrogen production (Choudhary et al, 2001 ⁶)
- Simple NH₃ decomposition model was used to account for the loss to enable modeling
- Current approach uses same kinetic parameters for all aging states
- Aged samples decompose less NH₃ because less remains adsorbed at high temperatures
- This reaction was only included in simulation of anaerobic storage experiments

NH₃ decomposition

$$r_{decomp,s1} = A_{decomp} e^{\frac{-E_{decomp}}{RT}} \theta_{NH_3,s1}$$
$$r_{decomp,s2} = A_{decomp} e^{\frac{-E_{decomp}}{RT}} \theta_{NH_3,s2}$$

 $2NH_3 \rightarrow N_2 + 3H_2$

Parameter	Units	Value
A _{decomp}	1/s	0.45
e _{decomp}	kJ/mol	40

⁶ Choudhary, T.V., C. Sivadinarayana, and D.W. Goodman, "Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications". *Catalysis Letters*, 2001. 72(3-4): p. 197-201 DOI: 10.1023/a:1009023825549.

Two site NH₃ storage model

$$\frac{\partial c_{g,NH_3}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NH_3}}{\partial x} + \frac{\Omega_1}{\varepsilon} (r_{des,s1} - r_{ads,s1}) + \frac{\Omega_2}{\varepsilon} (r_{des,s2} - r_{ads,s2})$$
 Form of storage model similar to Colombo et al, 2012 ⁴

Parameter	Units	Site 1	Site 2
A _{ads,s}	m ³ /mol/s	1.4	1.0
A _{des,s}	1/s	8.536E+3	2.4E+4
e _{ads,s}	kJ/mol	69.0	93.0
γ		0.216	0.080

Site 1 (Weakly Adsorbed)

Site 2 (Strongly Adsorbed)

$$r_{ads,s1} = A_{ads,s1}c_{g,NH_3}(1 - \theta_{NH_3,s1}) \qquad r_{ads,s2} = A_{ads,s2}c_{g,NH_3}(1 - \theta_{NH_3,s2})$$

$$r_{des,s1} = A_{des,s1}e^{\frac{-E_{des,s1}(1 - \gamma_1\theta_{NH_3,s1})}{RT}}\theta_{NH_3,s1} \qquad r_{des,s2} = A_{des,s2}e^{\frac{-E_{des,s2}(1 - \gamma_2\theta_{NH_3,s2})}{RT}}\theta_{NH_3,s2}$$

- As in most previously published models, we assume an un-activated adsorption reaction
- We gave ourselves the ability to include a small coverage dependence on the strongly adsorbed site

Current best fits of storage data

Coverage on two sites as a function of time - fresh catalyst

Theta 1 does not reach 100% because of coverage dependence

- Much of the NH₃ weakly adsorbed on the type 1 site is released when the inlet concentration drops to zero
- NH₃ strongly bound on the type 2 site remains until TPD

Current best fits of storage data

$$\Omega_1 + \frac{\Omega_2}{0.92} = const$$

- 0.92 is the approximate coverage of the type 2 sites at saturation (<1.0 because of coverage dependence)
- Current compromise actually results in slight increase in storage instead of decrease during aging
 - Could change conversion rules so that total capacity decreases, but that would make the aged TPD peak even shorter
 - Hard to make the aged TPD peak narrower while still providing a good match to isothermal desorption
- Note that Ω sometimes denotes total storage here it is maximum potential storage for a given site

State	Ω ₁	Ω ₂
fresh	75.6	39.6
aged 4 hr at 700 C	84.4	31.5
aged 6 hr at 800 C	117.5	1.0

Better fits may still be possible with this scheme

Ω values are given in mol/m³ monolith

Transient coverage along axial length - fresh catalyst

Proudly Operated by Battelle Since 1965

Modeling reactions relevant to SCR

- Two-site kinetic models were also developed for various reactions which determine SCR performance tuned from steady state conversions at various temperatures
- Values of kinetic parameters for the two sites are kept the same for all aging states only the proportions of the two sites change
- The proportions of the two sites are essentially used as an index to describe various changes in surface processes that may happen over the course of mild aging
- So far, the kinetic parameters have been tuned against the data from fresh and 6 hr aged data. They have not yet been checked against reaction data from the sample aged 4 hrs at 700°C.

$\rm NH_3$ oxidation	$2NH_3 + 3/2O_2 \rightarrow N_2 + 3H_2O$
NO oxidation	$NO + 1/2O_2 \leftrightarrow NO_2$
Standard SCR	$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$
Fast SCR	$4NH_3 + 2NO + 2NO_2 \rightarrow 4N_2 + 6H_2O$

- The current simple model does not include:
 - N₂O formation
 - NO formation by NH₃ oxidation
 - NH₄NO₃ formation or decomposition
 - NO₂ SCR

NH₃ oxidation reaction

$$\frac{\partial c_{g,NH_3}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NH_3}}{\partial x} + \frac{\Omega_1}{\varepsilon} (r_{des,s1} - r_{ads,s1} - r_{NH_3oxi,g1}) + \frac{\Omega_2}{\varepsilon} (r_{des,s2} - r_{ads,s2} - r_{NH_3oxi,g2})
\frac{d\theta_{NH_{3,s1}}}{dt} = r_{ads,s1} - r_{des,s1}
\frac{d\theta_{NH_{3,s2}}}{dt} = r_{ads,s2} - r_{des,s2} - r_{NH_3oxi,s2}
\frac{d\theta_{NH_3oxi,g1}}{dt} = k_{NH_3oxi,g2} - k_{NH_3oxi,g2} c_{g,O_2} c_{g,NH_3}
r_{NH_3oxi,g2} = k_{NH_3oxi,g2} c_{g,O_2} c_{g,NH_3}
r_{NH_3oxi,g2} = k_{NH_3oxi,g2} c_{g,O_2} c_{g,NH_3}$$

- Because of very low surface coverages, at high temperatures, we found it necessary to include rates based on gas concentrations as in Sjövall et al, 2010⁶
- Ability of model to match standard SCR experiments also depends upon the form of the NH₃ oxidation model

⁶ Sjövall, H., R.J. Blint, A. Gopinath, and L. Olsson, "A Kinetic Model for the Selective Catalytic Reduction of NOx with NH3 over an Fezeolite Catalyst". *INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH*, 2010. 49(1): p. 39-52 DOI: 10.1021/ie9003464.

Pacific Northwes

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

NO oxidation reaction

$$\frac{\partial c_{g,NO}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NO}}{\partial x} - \frac{\Omega_1}{\varepsilon} (r_{NO-oxi,g1}) - \frac{\Omega_2}{\varepsilon} (r_{NO-oxi,g2})$$
$$\frac{\partial c_{g,NO_2}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NO_2}}{\partial x} + \frac{\Omega_1}{\varepsilon} (r_{NO-oxi,g1}) + \frac{\Omega_2}{\varepsilon} (r_{NO-oxi,g2})$$

$$r_{NO-oxi,g} = k_{NO-oxi,g} \left(c_{g,NO} c_{g,O_2}^{\frac{1}{2}} - \frac{c_{g,NO_2}}{K_{eq}} \right)$$

NO oxidation model assumes no NO₂ inhibition

Parameter	Units	Site 1	Site 2
A _{NH3oxi,s}	m ³ /mol/s		2.118E+6
е _{NHЗoxi,s}	kJ/mol		108.07
A _{NH3oxi,g}	m ⁶ /mol ² /s	2.150E+4	3.244E+9
е _{NH3oxi,g}	kJ/mol	71.95	126.25
A _{NO-oxi,g}	m ^{9/2} /mol ^{3/2} /s	21.63	1.449E+4
e _{NO-oxi,g}	kJ/mol	38.93	66.00

0.25

0.2

0.15

0.1

0.05

100

+

200

NO Conversion (frac)

Kinetic models including SCR reactions

Proudly Operated by Battelle Since 1965

$$\frac{\partial c_{g,NH_3}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NH_3}}{\partial x} + \frac{\Omega_1}{\varepsilon} (r_{des,s1} - r_{ads,s1} - r_{NH_3oxi,g1}) + \frac{\Omega_2}{\varepsilon} (r_{des,s2} - r_{ads,s2} - r_{NH_3oxi,g2} - r_{std-scr,g2})$$

$$\frac{\partial c_{g,NO}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NO}}{\partial x} + \frac{\Omega_1}{\varepsilon} (-r_{NO-oxi,g1} - r_{std-scr,s1} - \frac{1}{2}r_{fast-scr,s1}) + \frac{\Omega_2}{\varepsilon} (-r_{NO-oxi,g2} - r_{std-scr,s2} - r_{std-scr,g2} - \frac{1}{2}r_{fast-scr,s1})$$

$$\frac{\partial c_{g,NO_2}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NO_2}}{\partial x} + \frac{\Omega_1}{\varepsilon} (r_{NO-oxi,g1} - \frac{1}{2}r_{fast-scr,s1}) + \frac{\Omega_2}{\varepsilon} (r_{NO-oxi,g2} - \frac{1}{2}r_{fast-scr,s1})$$

$$\frac{\partial \theta_{NH_{3,s1}}}{dt} = r_{ads,s1} - r_{des,s1} - r_{std-scr,s1} - r_{fast-scr,s1}$$

$$\frac{\partial \theta_{NH_{3,s2}}}{dt} = r_{ads,s2} - r_{des,s2} - r_{NH_3oxi,s2} - r_{std-scr,s2} - r_{fast-scr,s2}$$

$$r_{std-scr,s1} = A_{std-scr,s1} e^{\frac{-E_{std-scr,s1}}{RT}} c_{std-scr,s1}$$

Parameter	Units	Site 1	Site 2
A _{std-scr,s}	m ³ /mol/s	1.796E+9	2.565E+16
e _{std-scr,s}	kJ/mol	89.93	153.9
A _{std-scr,g}	m ⁶ /mol ² /s		2.648E+8
e _{std-scr,g}	kJ/mol		61.56
A _{fast-scr,s}	m ⁶ /mol ² /s	1.9E+12	1.9E+12
e _{fast-scr,s}	kJ/mol	85.0	85.0

$$r_{std-scr,s1} = A_{std-scr,s1}e^{\frac{-E_{std-scr,s1}}{RT}}c_{g,NO}\theta_{NH_3,s1}$$

$$r_{std-scr,s2} = A_{std-scr,s2}e^{\frac{-E_{std-scr,s2}}{RT}}c_{g,NO}\theta_{NH_3,s2}$$

$$r_{std-scr,g2} = A_{std-scr,g2}e^{\frac{-E_{std-scr,g2}}{RT}}c_{g,NO}c_{g,NH_3}$$

$$r_{fast-scr,s1} = A_{fast-scr,s1}e^{\frac{-E_{fast-scr,s1}}{RT}}c_{g,NO}c_{g,NO_2}\theta_{NH_3,s1}$$

$$r_{fast-scr,s2} = A_{fast-scr,s2}e^{\frac{-E_{fast-scr,s2}}{RT}}c_{g,NO}c_{g,NO_2}\theta_{NH_3,s1}$$

Kinetic models including SCR reactions

- As with the NH₃ oxidation reactions, some standard SCR rates are a function of gas phase NH₃ concentrations after Sjövall et al, 2010⁶
- Where a reaction rate depends upon a surface concentration, moles consumed are removed from the respective site
- Where rates depend upon gas phase concentrations, moles consumed are removed from the gas
- Note that all changes to gas phase concentrations are keyed to Ω values for one site or the other, even where rate equations do not depend upon surface coverages
 - \blacksquare Ω s serve to quantify the amount of catalyst present
 - For reactions that take place on other sites, we are essentially assuming a fixed ratio between the reaction sites and NH₃ storage sites
- Although the fast SCR reaction was included in modeling of the standard SCR experiments, the kinetic parameters were not tuned – instead, parameter values from Olsson et all, 2008 ¹ were used for both sites

Results for standard SCR reaction

Proudly Operated by Battelle Since 1965

April 15, 2013

Kinetic from gas and surface concentrations

- Various combinations were tried for reactions based on surface and gas concentrations
- The set shown gave us the best match for our data sets
- Generality of this scheme must be verified using additional validation experiments
- The model could be further simplified at the expense of lower accuracy across the temperature range
- Alternately, perhaps the addition of other reactions would allow elimination of some of those used and provide a more realistic structure

Reaction	Site	Surface	Gas
NO oxidation	1		•
	2		•
NH3 oxidation	1	•	•
	2		•
Standard SCR	1	•	
	2	•	•

- A two-site global kinetic model has been developed to describe NH₃ storage and SCR reactions on fresh to moderately aged samples of a current commercial Cu-CHA catalyst
- The model can describe the basic shapes of isothermal adsorption/desorption curves and TPD peaks
- Kinetic parameters were fit to describe NH₃ oxidation, NO oxidation, and standard SCR reactions
- The current model could be useful for some applications with little NO₂ present
- It may be possible to extend the modeling approach to a broader range of aging states and conditions including NO₂

Future steps

- Try adapting model to describe Fast SCR, NO₂ SCR experiments
- Consider adding other reactions
 - **NH** $_4$ NO $_3$ formation
 - N₂O formation
- Evaluate model conversion predictions against CLEERS SCR protocol data from 'de-greened' sample aged 4 hrs at 700°C
- Try to extend model to fit data from more sample more severely aged at 800°C for 16 hrs
- Add option for film resistance
- Evaluate model against transient data from CLEERS SCR protocol
- Consider running additional experiments for validation
 - Vary space velocity
 - Vary NH₃/NO_X ratio
 - SpaciMS could be used to compare concentrations along the channels to model predictions
- Improve fidelity of method to account for loss of NH₃ during storage experiments (decomposition/oxidation)

Questions for the audience

- Should we be concerned with changes in NH₃ storage behavior that happen over the first ~50,000 miles of a vehicle's life?
- What if these changes in storage behavior are not attended by dramatic changes in steady state NO_x reduction performance?
- Are changes in NH₃ oxidation rates (measured without NO_X present) important, even if they don't seem to significantly impact steady state NO_X reduction?