

Development and Application of a Fast Quasi-Steady Solver for Integrated Modeling of Exhaust Aftertreatment Systems

Syed Wahiduzzaman, Weiyong Tang, Seth Wenzel, Gamma Technologies, Inc.

11th Cleers Workshop

May 13-14 2008, Dearborn, MI, USA

Modeling Solutions Overview

Solution Overview \bullet

•

Calibration

Q-S Solver

SCR

DOC

Aged DOC

SIL/HIL /NN

2D/3D Model

Conclusions

Flow model to coupled reactor model *GUI based chemistry library (SAE 2007-01-4127, 9-10th Cleers Workshop)*

 Computational y efficient solver Quasi-Steady (QS) solver (SAE 2008-01-0866)

Kinetic parameter calibration *DoE (Design of Experiment) or direct optimizer (SAE 2007-01-4127)*

Modeling Solutions Overview (Cont.)

Solution Overview Calibration Q-S Solver SCR DOC Aged DOC SIL/HIL /NN 2D/3D Model Conclusions • Advanced applications System modeling, effect s of aging

 Fast models for SIL and HIL applications
 From detailed model to NN model
 (SIA, 28-29th May, 2008, INSA de Rouen, France)

Multi-dimensional and quasi-dimensional solution
 QS based 2D/3D modeling

Flow Model to Reactor Model

		Reactants		Products)OC			LNTryns-01								
		CO + I	0.502		CO2	÷			÷								
		C3H6 + 4	4.502	3CO2 +	3H2O	1			, P								
Reactants Pro			Products	Pre-e	xponent Multiplier	Temperature E	Exponent	perature	Concentration Expressi	Coverage E	xpression f						
_									К	-							
Ba	aCO:	3 + 2NO2 + .5O2		Ba(NO3)2 + CO2		1500		0		600	{NO2}*{O2}^0.5		A(1)				
Ba	aCO:	3 + 2NO + 1.5O2		Ba(NO3)2 + CO2		15000		0		500	{NO}^0.5*{02}^1.5		A(1)				
Ba(NO3)2 + 3CO BaCO3 +		03 +2NO + 2CO2		2.0E14		0		400	{CO}^3.0		1-A(1)						
Ba(NO3)2 + H2 + CO2 BaCO3 -		:03 +2NO2 +H2O		0		0		400	{CO2}*{H2}		1-A(1)						
		NO+0.502		NO2		9.0E9		-1	8	3419.25	{NO}		1				
		NO2		NO+0.502		5.0E10		-1	8	3419.25	{NO2}		1				
		CO + NO		CO2 + 0.5N2		9.0E1/		U		400	1.5E16*{CO}^3.0*{N		1				
							1000										
		800	00000		-1		5500			- @>-	_						
	8000000 1.429129E10			-1	84	19.25 1		pr	od_h2-0	2							
		7.705	533E8		-1	84	19.25			A							
		5.3	39E16		-1	-	16000			S.							
	7.70533E8 5.39E16			с	oncentr	ation Expressions			pr	°04_co-U	2						
										-®	_						
					{CO	}*{02}/G(1)^2.0/0	G(2)/G(3)		pro	od_&2-0	02						
					{C3H6]	}*{02}/G(1)^2.0/3	G(2)/G(3)			A							
					{(H2)	}*{02}/G(1)^2.0/G	G(2)/G(3)			- V							
						{N0	0}*{02}		pr	od_82-0	2						
							{NO2}										
						Langmui	r-Hinshelwood E	xpression	5								
					1.0) + 65.6*exp(961.0,	/T)*{CO} + 1.08	e3*exp(3	61.0/T)*{C3H6}								
				Fuel-0:	FueT-02 1.0 + 3.98*exp(11611/T)*{CO}^2.0*{C3H6}^2.0												
					1.0 + 4.79e5*exp(-3733./T)*{NO}^0.7												
					1.0 + 19.86*exp(654.5/T)*{CO}												
					1	L.0 + 65.6*exp(961	.0/T)*{CO} + 1.	08e3*exp	(361.0/T)*{HC}	1							
								_	-								

All in a one integrated environment

Computational Efficiency of Q-S Solver (SAE 2008-01-0866)

TWC kinetic model

- Simulation duration: 2942 seconds
- □ 20 sub-volume, dt = 0.1 seconds

QS can be 10-100 times faster than real time

Overview Calibration Q-S Solver SCR DOC Aged DOC SIL/HIL /NN

Solution

2D/3D Model

Conclusions

Accuracy of QS Approach

Component Level Modeling Zeolite Based SCR

- Experimental data was provided by PSA Peugeot Citroën
- Five set of calibration data aimed at determination of parameters involving
 - Test 1: Storage capacity, absorption/desorption
 * + NH₃ < = > *NH₃
 - Test 2: Ammonia oxidation $4NH_3 + 3O_2 => 2N_2 + 6H_2O$
 - Test 3: "Standard" SCR reaction $4NH_3 + 4NO + O_2 =>4N_2 + 6H_2O$
 - Test 4: "Slow" SCR reaction 8NH₃ + 6NO₂ = > 7N₂ + 12H₂O
 - Test 5: "Fast" SCR reaction 4NH₃ + 2NO + 2NO₂ => 4N₂ + 6H₂O

SGB protocol for testing SCR catalyst

Processed NH3 and Pollutant Sensors Data

Calculation of Storage Capacity

Storage Capacity (cont.)

- Experimental results suggest more NH₃ desorbed than could be accounted for by storage
- Two possibilities exist:

Solution

Overview

Calibration

Q-S Solver

SCR

DOC

Aged DOC

SIL/HIL /NN

2D/3D Model

Conclusions

- 1. experimental error in one or both NH₃ sensors
- 2. NH₃ is pre-stored

Storage Capacity (cont.)

- The onset of saturation and shape of saturation curve indicated by the exit NH₃ sensor seemed to be consistent
- Optimization was performed to determine:
 - storage capacity
 - pre-stored NH₃ (if any)
 - Optimization goal:
 - conserve NH₃ mass
 - conserve onset/shape of NH₃ saturation curve
- Built-in direct optimizer (Brent) was used

Storage Capacity (cont.)

- A pre-storage corresponding to 45% coverage and a storage capacity of 4.9E-3gmole/m² were determined
- These generally agree with all experiments

Standard Reaction

$4NH_3 + 2NO + 2NO_2 => 4N_2 + 6H_2O$

SCR NO_X Selectivity Study

- NO_X conversion should be highest at NO₂/NO_X ratio of 0.5 (or NO:NO₂ = 1:1)
 Study was performed using

 Vary NO₂/NO_X ratio from 0-1
 Vary temperature from 400-700K
 10 ppm NH₃ slip
 - 150 ppm NO_X , NH_3 (variable), 10% H_2O , 10% O_2 , balance N_2
 - Constant volume flow rate = 0.55 liter/s

SCR NO_x Selectivity Study

Transient Emission Predictions

- Calibrated SCR model used for Transient
 NDEC cycle
- Model ran under two conditions:
 - Absorption site 100% "open" (no NH₃ prestorage)

– Absorption site 0.0% "open"

Emission Predictions (cont.)

• All sites "open" (no NH₃ prestored)

 Cumulative Mass Changes: NO = -28% NO_X = -37% NO₂ = -49% NH₃ = -100%

Computational Efficiency: SCR

Solution Overview

Calib

Aged

SIL/H

2D/3D

Conclu

• Simulations were performed on a Pentium 4 3.4GHz processor with 1 GB of RAM

ration Q-S Solver			Time Step Size (s)	Simulation Time (s)	Computational Time (s)
SCR 📕		Abs/Des without O2	0.50	3654	31
DOC	_	Abs/Des with O2	0.50	3654	43
DOC		Standard Reaction	0.50	3654	45
L /NN Model		Slow Reaction	0.50	3654	49
sions		Fast Reaction	0.50	3654	57
		Transient without NH ₃ prestored	0.25	1166	85
		Transient with NH ₃ prestored	0.25	1166	87

Component Level Modeling: DOC

□ Step 1: Kinetic model calibration

Experiment was done at PSA Peugeot Citroen

NEDC Test Cycle Emissions: DOC

□ Step 2: Emission predictions

• Transient NEDC cycle

Solution

• Cumulative mass conversions predicted to be:

CO = 61% HC = 49% NO = 6%

Computational Efficiency: DOC

Solution Overview Calibration Q-S Solver SCR DOC SCR DOC SIL/HIL /NN 2D/3D Model Conclusions

• Simulations were performed on a Pentium 4 3.4GHz processor with 1 GB of RAM

	Time Step Size (s)	Simulation Time (s)	Computational Time (s)
Step 1: Calibration	0.25	327	11
Step 2: Prediction	0.25	1200	71

Measurements from Santhoji and coworkers:

"Aged DOC is a Net Consumer of NO2: Analysis of Vehicle, Enginedynamometer and Reactor Data", SAE NO. 2007-01-3984

Measurements from Santhoji and coworkers:

"Aged DOC is a Net Consumer of NO2: Analysis of Vehicle, Enginedynamometer and Reactor Data", SAE NO. 2007-01-3984

• Introduce additional reactions:

Solution Overview Calibration Q-S Solver SCR DOC Aged DOC SIL/HIL /NN 2D/3D Model Conclusions

R1: $CO + NO_2 => CO_2 + NO$

R2: $C_2H_4 + 4NO_2 => 2CO_2 + 6NO + 2H_2O$

R3: $C_2H_4 + 6NO_2 => 2CO_2 + 3N_2 + 2H_2O$

Measurements from Santhoji and coworkers:

"Aged DOC is a Net Consumer of NO2: Analysis of Vehicle, Enginedynamometer and Reactor Data", SAE NO. 2007-01-3984

Exp.

•• **Sim**.

Measurements from Santhoji and coworkers:

"Aged DOC is a Net Consumer of NO2: Analysis of Vehicle, Enginedynamometer and Reactor Data", SAE NO. 2007-01-3984

Model predicts cumulative NO₂ reduction = 44%

Experimental inlet conditions provided by PSA Peugeot Citroen

SIL/HIL Model Generation

Neural Network Training

Conversion Efficiency

• DOC

Conversion Efficiency

• SCR

SIL/HIL Enabled Engine/NN-AT Model

Computational Speed Comparison (1180s NDEC)

	Model Type	Solver	CPU
ion ew ion	Standalone Kinetic AT	QS	90s
Q-S ver	Standalone Neural Network AT	Explicit	2s
CR OC OC	Detailed Engine + Kinetic AT	Explicit	60h
NN	MV Engine + Kinetic AT	Explicit	39h
ons	MV Engine (Explicit) + Kinetic AT (QS)	Mixed	635s
	MV Engine + Neural Network AT	Explicit	625s
	MV Engine + Neural Network AT	GT-Suite RT	331s

Solut Overvi

Calibrat

So

S

D

Aged D

SIL/HIL

2D/3D Mo

Conclusio

Pseudo-Multi-D Methodologies Are real time 3-D simulations possible?

2D/3D Model

Conclusions

3D - vs- 1D

Based on thermal object

- Explicit discretization
- Discretized CatalystBrick and thermal objects

Based on Mathematical formulation (3-D conduction solution)

- Implicit discretization
- Diesel particulate ilters

Aftertreatment Simulation

• Modeling Techniques

Solution

Overview

Calibration

Q-S Solver

SCR

DOC

Aged DOC

SIL/HIL /NN

2D/3D Model

Conclusions

- 3D: model discretized in X ,Y, and Z direction
 - captures heat loss to environment
 - allows for non-uniform inlet flow
 - most computationally demanding

Aftertreatment Simulation

Representative Channel Approach

Typical Transient 2D Results

-0.115

0.061

0.122

0.183

Axial Distance [m]

0.244

0.305

Non-uniform Flow Distributions

0.96503

0.98251

MIN 0.737795

MAX 1.0

Physical layout out

0.92133

0.96066

MIN 0.41003874

MAX 1.0

Typical Transient 3D Results

Non-uniform front inlet mass flow rate intensity

Typical Transient 2D Results DPF Regeneration Animation

Conclusion

	 A Quasi-steady (QS) based solver have been implemented that conserves accuracy of the
Solution Overview	computationally demanding fully explicit solver
Calibration	 Calibration of global kinetics was shown to be
Q-S Solver	computationally efficient using DOE direct optimizers
SCR	 Feasibility of SIL/HIL compatible model generation
DOC	was demonstrated using detailed kinetic model
Aged DOC	
SIL/HIL /NN	 Various levels of modeling were demonstrated:
2D/3D Model	Detailed engine/vehicle + detailed kinetics to mean-
Conclusions	value engine/vehicle + NN/AT model
	 1-D methodology was extended to simulate multi-

dimensional effect s using QS based quasi 2D/3D development

1-D Catalyst Simulation

		6502 - V		CatCon	CatCon -	CatCon -	CatCon -	CatCon -	CatCon	CatCon -	CatCon	CatCon	6506 - V		0.470	SCR-09-	SCR=09	- SCR-09	SCR-09-	SCR-09	- SCR-09	- SCR=09	- SCR=09	- SCR=09	SCR-09-	- SCR=09	SCR-09	SCR-09	- SCR-09	SCR-09-	SCR-09-	- SCR-09	65m 06		
Solution Overview					2 3	. V4	V6	V7	- V9		V12	- V13	VI4	_		· VI	- V3	- V9	V6	V8 1	VII	-V13	- VI3	- VI7	- VI9	- VZ1	- VZ3 - VZ2	V25 V24	- VZ6	- V28	V30	.V32			
Calibration	534.7																																		
Q-S Solver	511.3,		 													+-+-	-+-+	-+-+						-+-+	-+-+									 	
SCR	487.8,		 											+-		+-+-	-+-+	-+-+			-+-+	-+-+	-+-+	-+-+-		-+-+	-+-		-+-		+ - + - + -	+ - + - 		 	
DOC	464.3,		 														-+-+	-+-+					-+-+	-+-+	-+-+	-+-+	-		- + - 1					 	
Aged DOC			 											+-		+-+-	-+-+	-+-+			-+-+	-+-+	-+-+	-+-+	-+-+	-+-+			-+-					 	
SIL/HIL /NN	emte 417.4,		 														-+-+	-+-+					-+-+	-+-+	-+-+	-+-+									
2D/3D Model	Tempel 303 0		1 1 1 1 1 1 1																																
Conclusions	- 555,5,		+ 											+-				-+-+		+-+-+						-+-+	-+-		-+-					+ 	
	370.4,		 														-+-+	-+-+					- + - +	-+-+		- + - +	-								
	346.9,		 													+-+-		-+-+		+-+-		-+-+				-+-+						+-+-			
	323.5,		 														-+-+	-+-+					-+-+	-+-+	-+-+	-+-+								 	
	300.0.																																		

47

2-D Catalyst Simulation

Computational Speed Consideration

Cross-section Number of Elements (nz=20)