Development and Implementation of Experimental Protocol for Steady-State and Transient SCR Kinetics

Josh A. Pihl and <u>Todd J. Toops</u> Oak Ridge National Laboratory

Vadim Strots and Ed Derybowski Navistar, Inc.

Gordon Parker and John Johnson Michigan Technological University

12th CLEERS Workshop

Objectives

- Develop experimental protocol for SCR catalysts to determine specific rate parameters for control strategies
 - Include steady-state and transient behavior
- Obtain accurate temperature dependent data under steady-state and transient operation
 - Covering typical operating range
 - Includes activity of stored NH₃

2 Managed by UT-Battelle for the U.S. Department of Energy

Approach to Protocol and Model Development

3 Managed by UT-Battelle for the U.S. Department of Energy

Automated bench reactor used to evaluate core samples

- Protocol programmed into system that enables automated switching of gases and furnace control
 - Solenoid valves
 - HPLC pump for H₂O introduction
- Gas Analysis: MKS FTIR
- Zeolite-based SCR catalyst
 - Evaluated at 150-600°C
 - 25°C steps for 150-250°C
 - 50°C steps for 250-600°C
 - GHSV: 60,000 120,000 h⁻¹

- CLEERS SCR focus-group has posted a steady-state SCR protocol
- Accurate models also require transient data; especially for system control
- Proposed protocol provides both transient & steady-state model parameters

- Pretreatment establishes consistent starting point for before making measurements
 - 30 minutes at 600°C in 10% O₂ and 5% H₂O/CO₂

• Cool to temperature of interest

- Maintain flows in 10% O_2 and 5% H_2O/CO_2

time (minutes)

- Measure NH₃ storage capacity under rich conditions
 - Remove O_2 from flow; Introduce 300 ppm NH₃ with 5% H₂O/CO₂

- Measure the NH₃ oxidation behavior
 - Add 10% O_2 to the existing flow of 300 ppm NH₃ with 5% H₂O/CO₂

- Measure the SCR kinetics while varying NH₃:NO ratio
 - Add 300 ppm NO, to the existing flow of 10% O_2 , 300 ppm NH_3 with 5% H_2O/CO_2
 - Vary NH₃ concentration from 240 to 360 ppm ($\alpha = 0.8-1.2 = NH_3/NO_x$)

- Measure the SCR kinetics while varying NO₂:NO_x ratio
 - Stop NO + Introduce 300 ppm NO₂ to 10% O₂, and 5% H_2O/CO_2
 - Flow stoichiometric NH₃
 - 400 ppm NH₃ when NO₂:NO_x = 1.0; 300 ppm NH₃ for NO₂:NO_x = 0.0 and 0.5

time (minutes)

Expected stoichiometry of SCR reactions

• NO_2 -only ($NO_2/NOx = 1.0$)

 $6 \text{ NO}_2 + 8 \text{ NH}_3 \rightarrow 12 \text{ H}_2\text{O} + 7 \text{ N}_2$ (NH₃:NO_x = 4:3)

• NO + NO₂ case (NO₂/NOx = 0.5)

 $NO + NO_2 + 2 NH_3 \rightarrow 3 H_2O + 2 N_2$ (NH₃:NO_x = 1:1)

• NO-only (NO₂/NOx = 0.0)

 $4 \text{ NO} + \text{O}_2 + 4 \text{ NH}_3 \rightarrow 6 \text{ H}_2\text{O} + 4 \text{ N}_2$ (NH₃:NO_x = 1:1)

- Measure kinetics of NO oxidation to NO₂
 - Stop 300 ppm NH₃ flow; continue to flow 10% O_2 , 300 ppm NO with 5% H₂O/CO₂
- As NO value increases to steady-state value it is possible to calculate the reactivity of stored NH₃

- NH₃ storage under lean conditions
 - Turn off NO flow; wait 10 minutes
 - Introduce 300 ppm NH_3 in 10% O_2 with 5% H_2O/CO_2

time (minutes)

- Temperature programmed oxidation/desorption of NH₃ stored under lean conditions
 - Turn off NH₃ flow; wait 10 minutes;
 - Ramp to 600°C at 5°C/min in 10% O_2 with 5% H_2O/CO_2

Protocol reveals characteristic transient chemistry of catalyst

Planned protocol evaluated at 150-600°C, 60k-120k h⁻¹

16 Managed by UT-Battelle for the U.S. Department of Energy

Steady-State Results

Varying NH_3/NO_x (α -ratio) and T demonstrate operating range of catalyst

- Generally, expected trends observed
 - With increasing temperature:
 - NO_x and NH₃ conversion increase
 - With increasing NH_3 dose (α -ratio):
 - NO_x conversion increases
 - NH₃ conversion decreases

Experiment conditions:

- SV = 90,000 hr⁻¹
- $NO_2/NO_x = 0$
- $\alpha = NH_3/NO_x = 0.8, 0.9, 1.0, 1.1, 1.2$
- Total $NO_x = 300 \text{ ppm}$
- 10% O₂, 5% CO₂, 5% H₂O

NH₃ inhibits NO-SCR reaction at low T

- Re-plotting data as a function of NH₃/NO_x ratio reveals NH₃ inhibition
- For T ≤ 300°C, increasing NH₃ decreases NO_x conversion
 - Indicates inhibition of NO-SCR reaction by excess NH₃ at low T
- Trend previously reported for zeolite-SCR
 - M. Wallin et al., J. Catal. 218 (2003) 354
 - A. Grossale et al., Catal. Today 136 (2008) 18
- Temperature of inhibition is catalyst dependent

Experiment conditions:

- SV = 90,000 hr⁻¹
- $NO_2/NO_x = 0$
- NH₃/NO_x = 0.8, 0.9, 1.0, 1.1, 1.2
- Total NO_x = 300 ppm
- 10% O₂, 5% CO₂, 5% H₂O

NO₂ more reactive than NO at all T

- As expected, 1:1 mixture of NO+NO₂ gives best performance
 - "Fast SCR" reaction
- However, NO₂ more reactive than NO at all temperatures
 - "Slow SCR" reaction not observed with NO₂
 - NO-only is "slowest" reaction
 - Characteristic of zeolite catalyst
 - A. Grossale et al. Catal. Today 136 (2008) 18
- NO₂-SCR reaction only contributor to N₂O formation

Experiment conditions

- SV = 90,000 hr⁻¹
- NO₂/NO_x = 0, 0.5, 1.0
- NH_3/NO_x = stoichiometric
- Total $NO_x = 300 \text{ ppm}$
- 10% O₂, 5% CO₂, 5% H₂O

Netonal Laborator

NH₃ oxidation observed above 350°C

- NH₃ oxidation increases rapidly above 350°C
- Catalyst selective for N₂ production from NH₃ oxidation
 - Typically oxidized to NO over precious metals
- Model must account for losses of NH₃ to direct oxidation
 - but not for additional NO formation

16% 14% NH₃ conversion 12% 10% 8% 6% 4% 2% 0% 100 200 300 400 500 600 temperature (°C) NH₃ oxidation products 16% 14% N₂ Yield (%N atoms) 12% 10% 8% ■ N₂O 6% 4% 2% 0% 350 400 450 500 550 Temperature (°C)

Experiment conditions

- SV = 90,000 hr⁻¹
- 300 ppm NH₃, 10% O₂, 5% CO₂, 5% H₂O

NO-oxidation peaks at 450-500°C

- NO oxidation increases with temperature up to 450°C
- Conversion decreases above 500°C
 - NO_x concentrations approach equilibrium values ∴ reaction slows

Experiment conditions

- SV = 90,000 hr⁻¹
- 300 ppm NO, 10% O₂, 5% CO₂, 5% H₂O

Transient Results

All surface NH₃ oxidizes or desorbs at temperatures above 400°C

- NH₃ storage capacity probed at two points:
 - 1. NH₃ uptake during step change at inlet
 - Absence of O₂
 - NH₃ stored at all temperatures
 - Storage decreases as T increases
 - 2. Temperature Programmed Oxidation (TPO) performed after lean NH₃ storage
 - Single <u>desorption</u> peak centered near 300°C
 - All NH₃ released/oxidized by 400°C
- All NH₃ stored at T ≥ 400°C oxidized by O₂ or desorbed when NH₃ flow stops

Experiment conditions

- SV = 90,000 hr⁻¹
- NH₃ Ads: 300 ppm NH₃, 0-10% O₂, 5% CO₂, 5% H₂O
- TPO: 10% O_2 , 5% CO_2 , 5% H_2O , 5°C/min ramp

24 Managed by UT-Battelle for the U.S. Department of Energy

Stored NH_3 not available for subsequent NO_x reduction above 350°C

- NO oxidation step provides another measure of NH₃ storage capacity
 - NO feed constant at 300 ppm after NH₃ turned off
 - Dips in NO concentration due to conversion by stored NH₃
 - Rate of stored NH₃ consumption (depth of dip in NO) increases with T
- Comparison to NO_x uptake under inert conditions confirms oxidation or desorption of previously stored NH₃

Experiment conditions

- SV = 90,000 hr⁻¹
- 300 ppm NO, 10% O₂, 5% CO₂, 5% H₂O

Optimization of protocol necessary

- Current research plan requires ~300 hours of catalyst evaluation
 - Planned protocol evaluated at:

150-600°C, 30k-120k h⁻¹, inlet NO_x: 150-500 ppm

- Eight weeks of normal workday operation
- Protocol must be optimized to aid new catalyst transitions
 - Identify most critical experiments through model parameter sensitivity analysis
 - Experiments with low sensitivity are removed from the matrix
- Efforts from this project and throughout the CLEERS community to be used help guide model optimization

Something to think about...

- After completing a portion of the protocol some steps have been modified
 - Change needed to simplify transitions...
 - only one concentration change at a time
 - ...or to modify parameter being measured
 - "Inert NH₃ storage \rightarrow TPD" instead of "Lean NH₃ storage \rightarrow TPO"
 - More changes may be necessary...
- Additional transient behavior measurements may be warranted
 - Cyclic $\rm NH_3$ introduction may offer most realistic behavior for reactivity of stored $\rm NH_3$
 - Inclusion will depend on the ability of the model to fit the behavior
 - Modeling results coming soon...

Summary

- Established an evaluation protocol providing both steady-state and transient chemistry
 - Optimized protocol will economize experiments
 - Starting point for validated CLEERS SCR protocol for transient behavior
- Several key SCR-chemistry findings
 - Stored $\rm NH_3$ reactivity identified specifically for reactivity to $\rm NO_x$ reduction
 - NH₃ identified as an inhibiting species at low temperatures
 - Temperature dependent NH₃ storage identified

Acknowledgements

Funding provided by

Ken Howden and Gurpreet Singh Office of Vehicle Technologies Advanced Combustion Engine U.S. Department of Energy

