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• Develop experimental protocol for SCR catalysts to determine specific rate 
parameters for control strategies
– Include steady-state and transient behavior

• Obtain accurate temperature dependent data under steady-state and 
transient operation
– Covering typical operating range
– Includes activity of stored NH3

Objectives
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Approach to Protocol and Model Development
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• ORNL provides unique 
capabilities and expertise not 
available at Navistar

• Michigan Tech models results 
with input from ORNL

• Navistar implements control 
model for device operation
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• Protocol programmed into system that 
enables automated switching of gases 
and furnace control
– Solenoid valves
– HPLC pump for H2 O introduction

• Gas Analysis: MKS FTIR

• Zeolite-based SCR catalyst
– Evaluated at 150-600°C

• 25°C steps for 150-250°C
• 50°C steps for 250-600°C

– GHSV: 60,000 - 120,000 h-1

Automated bench reactor 
used to evaluate core samples 

Core 
samples
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Evaluation Protocol Developed for SCR
• CLEERS SCR focus-group has posted a steady-state SCR protocol 
• Accurate models also require transient data; especially for system control
• Proposed protocol provides both transient & steady-state model parameters 
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Evaluation Protocol Developed for SCR
• Pretreatment establishes consistent starting point for before making measurements

– 30 minutes at 600°C in 10% O2 and 5% H2 O/CO2
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Evaluation Protocol Developed for SCR
• Cool to temperature of interest 

– Maintain flows in 10% O2 and 5% H2 O/CO2
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Evaluation Protocol Developed for SCR
• Measure NH3 storage capacity under rich conditions

– Remove O2 from flow; Introduce 300 ppm NH3 with 5% H2 O/CO2
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Evaluation Protocol Developed for SCR
• Measure the NH3 oxidation behavior 

– Add 10% O2 to the existing flow of 300 ppm NH3 with 5% H2 O/CO2
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Evaluation Protocol Developed for SCR
• Measure the SCR kinetics while varying NH3 :NO ratio 

– Add 300 ppm NO, to the existing flow of 10% O2 , 300 ppm NH3 with 5% H2 O/CO2

– Vary NH3 concentration from 240 to 360 ppm (α

 

= 0.8-1.2 = NH3 /NOx )
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Evaluation Protocol Developed for SCR
• Measure the SCR kinetics while varying NO2 :NOx ratio 

– Stop NO + Introduce 300 ppm NO2 to 10% O2 , and 5% H2 O/CO2
– Flow stoichiometric NH3

• 400 ppm NH3 when NO2 :NOx = 1.0; 300 ppm NH3 for NO2 :NOx = 0.0 and 0.5 
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Expected stoichiometry of SCR reactions

• NO2 -only (NO2 /NOx = 1.0)

6 NO2 + 8 NH3  12 H2 O + 7 N2 (NH3 :NOx = 4:3)

• NO + NO2 case (NO2 /NOx = 0.5)

NO + NO2 + 2 NH3  3 H2 O + 2 N2 (NH3 :NOx = 1:1)

• NO-only (NO2 /NOx = 0.0)

4 NO + O2 + 4 NH3  6 H2 O + 4 N2 (NH3 :NOx = 1:1)
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Evaluation Protocol Developed for SCR
• Measure kinetics of NO oxidation to NO2

– Stop 300 ppm NH3 flow; continue to flow 10% O2 , 300 ppm NO with 5% H2 O/CO2
• As NO value increases to steady-state value it is possible to calculate the reactivity of stored NH3
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Evaluation Protocol Developed for SCR
• NH3 storage under lean conditions 

– Turn off NO flow; wait 10 minutes 
– Introduce 300 ppm NH3 in 10% O2 with 5% H2 O/CO2
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Evaluation Protocol Developed for SCR
• Temperature programmed oxidation/desorption of NH3 stored under lean conditions 

– Turn off NH3 flow; wait 10 minutes; 
– Ramp to 600°C at 5°C/min in 10% O2 with 5% H2 O/CO2
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Protocol reveals characteristic transient 
chemistry of catalyst
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• Planned protocol evaluated at 150-600°C, 60k-120k h-1
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Steady-State Results
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Varying NH3 /NOx (α-ratio) and T 
demonstrate operating range of catalyst

• Generally, expected trends observed
– With increasing temperature: 

• NOx and NH3 conversion increase
– With increasing NH3 dose (α-ratio):

• NOx conversion increases
• NH3 conversion decreases

Experiment conditions:
– SV = 90,000 hr-1

– NO2 /NOx = 0
– α

 

= NH3 /NOx = 0.8, 0.9, 1.0, 1.1, 1.2
– Total NOx = 300 ppm
– 10% O2 , 5% CO2 , 5% H2 O

α =
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NH3 inhibits NO-SCR reaction at low T

• Re-plotting data as a function of NH3 /NOx
ratio reveals NH3 inhibition

• For T ≤

 

300°C, increasing NH3 decreases 
NOx conversion
– Indicates inhibition of NO-SCR reaction 

by excess NH3 at low T
• Trend previously reported for zeolite-SCR

– M. Wallin et al., J. Catal. 218 (2003) 354
– A. Grossale et al., Catal. Today 136 (2008) 18 

• Temperature of inhibition is catalyst 
dependent 

Experiment conditions:
– SV = 90,000 hr-1

– NO2 /NOx = 0
– NH3 /NOx = 0.8, 0.9, 1.0, 1.1, 1.2
– Total NOx = 300 ppm
– 10% O2 , 5% CO2 , 5% H2 O
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NO2 more reactive than NO at all T
• As expected, 1:1 mixture of NO+NO2 gives 

best performance
– “Fast SCR” reaction

• However, NO2 more reactive than NO at all 
temperatures
– “Slow SCR” reaction not observed with 

NO2

– NO-only is “slowest” reaction
– Characteristic of zeolite catalyst

A. Grossale et al. Catal. Today 136 (2008) 18
• NO2 -SCR reaction only contributor to N2 O 

formation

Experiment conditions
– SV = 90,000 hr-1

– NO2 /NOx = 0, 0.5, 1.0
– NH3 /NOx = stoichiometric
– Total NOx = 300 ppm
– 10% O2 , 5% CO2 , 5% H2 O
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NH3 oxidation observed above 350°C

• NH3 oxidation increases rapidly above 
350°C

• Catalyst selective for N2 production from 
NH3 oxidation
– Typically oxidized to NO over precious 

metals
• Model must account for losses of NH3 to 

direct oxidation 
– but not for additional NO formation

Experiment conditions
– SV = 90,000 hr-1

– 300 ppm NH3 , 10% O2 , 5% CO2 , 5% H2 O

NH3 oxidation products
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NO-oxidation peaks at 450-500°C

• NO oxidation increases with temperature up 
to 450°C

• Conversion decreases above 500°C
– NOx concentrations approach 

equilibrium values ∴

 

reaction slows

Experiment conditions
– SV = 90,000 hr-1

– 300 ppm NO, 10% O2 , 5% CO2 , 5% H2 O
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Transient Results
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All surface NH3 oxidizes or desorbs at 
temperatures above 400°C
• NH3 storage capacity probed at two points:

1. NH3 uptake during step change at inlet
• Absence of O2
• NH3 stored at all temperatures 
• Storage decreases as T increases

2. Temperature Programmed Oxidation 
(TPO) performed after lean NH3 storage
• Single desorption peak centered 

near 300°C
• All NH3 released/oxidized by 400°C

• All NH3 stored at T ≥

 

400°C oxidized by O2
or desorbed when NH3 flow stops

Experiment conditions
– SV = 90,000 hr-1

– NH3 Ads: 300 ppm NH3 , 0-10% O2 , 5% CO2 , 5% H2 O
– TPO: 10% O2 , 5% CO2 , 5% H2 O, 5°C/min ramp
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• NO oxidation step provides another 
measure of NH3 storage capacity
– NO feed constant at 300 ppm after NH3

turned off
– Dips in NO concentration due to 

conversion by stored NH3

– Rate of stored NH3 consumption (depth 
of dip in NO) increases with T

• Comparison to NOx uptake under inert 
conditions confirms oxidation or desorption 
of previously stored NH3

Experiment conditions
– SV = 90,000 hr-1

– 300 ppm NO, 10% O2 , 5% CO2 , 5% H2 O

Stored NH3 not available for subsequent 
NOx reduction above 350°C

NH3 stored NOx reduced by stored NH3
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Optimization of protocol necessary

• Current research plan requires ~300 hours of catalyst evaluation
– Planned protocol evaluated at:

150-600°C, 30k-120k h-1, inlet NOx : 150-500 ppm
– Eight weeks of normal workday operation 

• Protocol must be optimized to aid new catalyst transitions
– Identify most critical experiments through model parameter 

sensitivity analysis
– Experiments with low sensitivity are removed from the matrix

• Efforts from this project and throughout the CLEERS community to be 
used help guide model optimization
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Something to think about…
• After completing a portion of the protocol some steps have been 

modified
– Change needed to simplify transitions…

• only one concentration change at a time 
– …or to modify parameter being measured

• “Inert NH3 storageTPD” instead of “Lean NH3 storageTPO”
– More changes may be necessary…

• Additional transient behavior measurements may be warranted
– Cyclic NH3 introduction may offer most realistic behavior for 

reactivity of stored NH3
– Inclusion will depend on the ability of the model to fit the behavior

• Modeling results coming soon…
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Summary

• Established an evaluation protocol providing both steady-state and 
transient chemistry
– Optimized protocol will economize experiments
– Starting point for validated CLEERS SCR protocol for transient 

behavior 

• Several key SCR-chemistry findings
– Stored NH3 reactivity identified specifically for reactivity to NOx

reduction 
– NH3 identified as an inhibiting species at low temperatures
– Temperature dependent NH3 storage identified 
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