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Rapid Aging and Poisoning Protocols
• Goal:

− Accelerated test protocol which simulates longer mileage field-service
− Evaluate durability and understanding mechanisms of deterioration
− If available, compare results to field-aged catalysts
− Generate data that could be used to model deactivation

• Benefits include:
• Better understanding of processes and mechanisms
• More rapid product development
• Verification of application early in life cycle
• Testing for uncommon situations
• Research basis for new materials or applications

• Aftertreatment Aging Projects 
• Lube-oil effects on DOC (ZDDP-focus)
• Thermal Aging of LNTs (focus of this talk)
• Accelerated Ash loading in DPFs
• SCR (ZDDP, thermal aging, sulfur…system evaluation with DOC and DPF)
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LNT High Temperature Thermal Aging

• Key concern for Lean NOx Trap Durability 
− high temperature periodically required to desulfate LNTs

• Exposure to lean and rich conditions is important 
characteristic of onboard de-sulfation

• Expected deactivation mechanisms 
− Precious metal sintering
− Surface area losses
− Solid-state reactions (barium aluminate formation)
− Storage medium migration
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Outline 
• Engine Based Aging

− Model Catalyst
− Observations and Characterization
− Correlation to performance

• Bench Reactor (core) Based Aging
− “Fully-Formulated” Catalyst
− Observations and Characterization
− Need for deactivation modeling and correlations

• Future Efforts
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Engine-based Thermal Aging
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Engine Bench Setup

Key feature 
for aging:

• Diesel fuel 
injected 
into 
exhaust 
manifold

• Feature 
used both 
for aging 
and for 
evaluation
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Engelhard (BASF) LNTs

• Model catalysts (no oxygen storage)

• NGK cordierite substrates, 300 cpsi, 
2”x3”, two bricks used

• Barium / PGM / alumina
− 150 gm/ft3 PGM, 14 Pt / 1 Rh
− 230 gm/liter total washcoat loading
− ~30% barium carbonate
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Engine based cycles
• Engine operates steady state at 1000 rpm

− 1000 ppm NOx, 60k h-1 GHSV
• Diesel fuel injection in exhaust manifold using heated atomizer

− Target 13:1 A/F
• Degreening procedure

− 4 hours engine exhaust
• Evaluation Conditions 

− 20 seconds lean, 4 seconds rich
− 400 C target temperature

• Aging cycle
− 300 second rich, 120 second lean
− Inject fuel until target temperature is achieved then cut off fuel
− Target Temperatures: 600, 700 and 800°C



9

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Temperature Profile 
During Thermal Aging

• 600°C Target
− 620°C avg.
− 760°C max

• 700°C Target
− 690°C avg.
− 790°C max

• 800°C Target
− 780°C avg.
− 910°C max

 Typical Midbed Temperature Profile 
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LNT Deactivation More Severe 
above 800C
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XRD Analysis Shows Pt Sintering and 
Impact on Alumina Morphology

• Pt sintering 
Observed

• Al2O3 impact 
observed at 
800C
− γ to δ Al2O3

transition 
expected at 
~850C

Legend:  - Ba2CO3, - Pt, C - Cordierite, A - γ-Al2O3
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Catalyst Characterization Summary
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800 780 46 front 16 57 6.2 5.3 82 43%
800 780 46 rear 17 60 6.6 6.1 73 44%
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Surface Area Losses Directly 
Proportional to Performance Losses 

• When normalized to surface area, storage capacity (at t=1h) and 
overall reaction rate ~constant
− Suggests storage capacity is most important factor at 400C
− Indicates storage capacity and overall rate are dictated by total 

surface area

 

4.6
5.5 5.2 4.8 5.2 5.1

4.3

0
1
2
3
4
5
6
7

Fresh 600 600 700 700 800 800

front rear front rear front rear

Ca
pa

ci
ty

 (
μ

m
ol

s 
NO

/m
2 )

1.0 1.0
1.1

0.8 0.9
1.0 1.1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Fresh 600 600 700 700 800 800

front rear front rear front rear

Ra
te

 (
μm

ol
s 

NO
/s

-m
2 )



14

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Performance Losses not Directly Linked 
to Pt Surface Losses at 400C

• Rate Normalized to Exposed PGM increases
− Deactivation can not be directly correlated to Pt surface sites 

at 400C
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Engine-Aging Summary

• Greatest impact occurs for T>800C
− Midbed of LNT reaches 900C
− Alumina γ to δ transition begins at 850C

• Performance loss at 400C can be directly 
correlated to surface area loss
− Storage capacity and overall rate decrease is 

directly proportional to surface area decrease 
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Bench Aging (core)
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• Implementation of engine-based thermal aging has 
limitations

• Core bench reactor used to perform thermal aging
− Temperatures of 700, 800, 900 and 1000°C
− Simulated diesel exhaust gas
− NOx reduction performance evaluated at 400°C
− Materials characterization

TEM, XRD and EPMA

• “Fully-Formulated”
catalyst with oxygen 
storage component
− High temperature 

LNT formulation (Delphi)
Ba, K, Pt, Rh, Ce

Bench Reactor Thermal Aging
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UT Bench-Flow Reactor for LNT Aging

#1 #2 #3 #4 #5 #6

5mm

19mm

38mm

57mm

76mm

Flow Direction
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Bench reactor gas compositions

Lean Gas Mix Rich Gas Mix

CO2     5%
NO    1000 ppm
H2O    10%
O2        10%
N2       Balance

CO2     5%
NO    1000 ppm
H2O    10%
CO     4%
H2          1.33%         
N2           Balance

Aging
Temperature Lean Gas Mix Rich Gas Mix

700°C

CO2     5%
NO  1000 ppm
H2O    10%
O2         10%
N2 Balance

CO2     5%
NO  1000 ppm
H2O    10%
CO     4%
H2          1.33%
O2          2%
N2          Balance

800°C

CO2     5%
NO    1000 ppm
H2O    10%
O2         10%
N2         Balance

CO2     5%
NO    1000 ppm
H2O    10%
CO     4%
H2          1.33%
O2          2%
N2          Balance

900°C

CO2     5%
NO  1000 ppm
H2O    10%
O2         10%
N2         Balance

CO2     5%
NO    1000 ppm
H2O    10%
CO     6%
H2         2%
O2         3%
N2         Balance

1000°C

CO2     5%
NO    1000 ppm
H2O    10%
O2         10%
N2         Balance

CO2     5%
NO    1000 ppm
H2O    10%
CO     9%
H2          3%
O2          5%
N2          Balance

THERMAL
AGING MIXES

PERFORMANCE
EVALUATION MIXES

GHSV = 60,000 h-1
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Typical Temperatures 
During LNT Bench Aging

• Reproducible profile 
obtained for each 
target temperature
− Detailed 800-1000C 

profiles included on 
website version

• Max temperature 
observed at 19 mm
− 25% of length
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“Fully-Formulated” LNTs Demonstrate 
Increased Durability Compared to Model   

• Nominal impact up 
to 825C

• Above 950C, 
deactivation more 
significant
− above γ to δ

Al2O3 transition

• Above 1000C 
− new deactivation 

mechanism likely70.00
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LNT Material Changes

TEM IMAGE PROCES

FRESH

800oC/50 cycles

800oC/300 cycles

APPARENT BARIUM AGGLOMERATION

PARTICLE SIZE DISTRIBUTION OBTAINED FROM TEM 

BaCO3

γ-Al2O3

Fresh

Pt

Aged at 1000C 
and 250cyclesBaCO3 Pt γ-Al2O3

BaCO3

γ-Al2O3

Fresh

Pt

Aged at 1000C 
and 250cyclesBaCO3 Pt γ-Al2O3

TRANSFORMATION OF BaCO3 (TO BaAl2O4)BaAl2O4

850CFresh

POTASSIUM MIGRATION
Pt 
Sintering
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Precious Metal Particle Size 
Steadily Increases (TEM-based)

• Essentially degreening at 700C

• Nominal increase above 700C

• Particle size distribution 
data also collected 
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Elemental Map Shows K migration 
for  Thermally-Aged LNTs
• K initially well-dispersed

• K clearly migrates into 
Cordierite after aging at 
900 and 1000°C
− 30% of K has migrated 

from washcoat
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XRD Patterns Corroborate Pt Sintering 
and suggest possible BaAl2O4 formation

• Pt sintering 
corroborated

• Al2O3 impact also 
observed at 1000C
− Increased 

stability likely 
due to OSC

• Possible BaAl2O4
formation observed 
at 1000C 

BaAl2O4 K2Al2O4
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Mechanisms of Deterioration for Hi-Temp LNTs
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Bench-Aging Conclusions
• At aging temperatures below 830C:

− Loss of NOx performance is minimal (100-96%)
− Observed materials changes include

Sintering of the precious metal

• At aging temperatures above this threshold temperature:
− NOx performance decreases to 89% 
− Observed materials changes include

Continued sintering of the precious metal
Partial phase change of alumina from γ-Al2O3 to δ-Al2O3

Migration of K to substrate interface
− Migration of K to the substrate interface subsides after about 

150 aging cycles

• At aging temperatures above 1000°C 
− NOx performance decreases to 76% 
− Partial conversion of Ba-phase to BaAl2O4



28

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Results can be used for 
Deactivation Modeling
• Has not been a focus of these projects to date

• Data available for modeling deactivation 
mechanisms
− Temperature profiles down core

Including time at each temperature
− Quantitative Materials Characterization

Pt Sintering
K migration into cordierite
Not presented here, but we have characterized 
catalysts at different lengths

• Can benefit catalyst lifetime estimates 
− Catalyst optimization, modeling aging factors, etc.
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Future plans 
• LNT effort is continuing in following areas

− Correlate performance loss to material changes
− Hopefully…modeling to correlate material changes and 

rates to aging temperature and time
− Aging studies with low temperature LNT formulation

• Other Rapid Aging/Poisoning projects
− DOC: nearly finalized, correlation analysis underway
− DPF: Ash loading rates based on oil consumption
− SCR: lube-oil effects, thermal aging, sulfur tolerance 

just getting started; deactivation mechanisms TBD
Being implemented on engine-based system with 
DOC and DPF
− Two sequences under consideration
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Engine aging and test rig
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Bench reactor flow schematic

6 5 4 3 2 1
temperatures
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Temperature Variation Along Axis
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TEM images showing PGM clusters

All images taken
at 100,000X

1000°C / 250 cycles900°C / 300 cycles

800°C / 300 cycles700°C / 300 cyclesfresh
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Average PGM diameter as function of 
aging temperature from XRD
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EPMA elemental maps of Pt, Ce,
Ba, and K in fresh LNT

Everything is evenly
dispersed

BaBack scatter

Ce K

Pt
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EPMA maps of K and Ba at different 
aging temperatures after 50 cycles

K

Ba

Migration of K

Agglomeration
of Ba
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EPMA maps as a function of aging
temperature and number of aging cycles

K Ba



41

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Future Plans
• Continue aging and characterization

− Barium/Potassium (high-temperature LNTs)
− Barium (low-temperature LNTs)

• Extract rates for aging mechanisms 
− LNT: PGM sintering and NOx storage media changes

Applicable temperature ranges
− DPF: Ash loading rates based on oil consumption
− SCR: ZDDP, thermal aging, sulfur tolerance 

just getting started; key deactivation mechanisms TBD
• Model deactivation with simple kinetics
• Continue modeling efforts to relate deactivation to 

performance losses
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