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Motivation to introduce higher levels of 
biodiesel fueled by many factors
• Biodiesel: alkyl ester similar to diesel fuel

• Synthesized from vegetable oil or animal fat
– Vegetable: Soybean (~90%), rapeseed, field pennycress, jatropha, etc.

• Several land-use debates/concerns currently ongoing
– Animal sources: Only waste or by-products being converted at this time

• Renewable energy source that has the potential to displace a portion of the 
petroleum that we import from foreign sources
– Maximum is a matter of debate and depends on source
– Peak annual production in US: 13 million barrels (2007)*
– Current US capacity: 53 million barrels annually*
– 2010 Petrodiesel used in US: ~1 billion barrels

* - source: www.BiodieselMagazine.com
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What impact could biodiesel have on emissions 
control devices?
• NaOH or KOH is a liquid-phase catalyst 

used in biodiesel synthesis 
– NaOH and KOH difficult to separate 

completely from products
– Specification set at 5 ppm Na/K in B100 

• Potential Na/K emissions control effects
– ash accumulation
– Alkali absorption into monolith walls 

• possible weakening of monolith
– Catalyst poisoning/fouling

• Long-term durability requirements set for 
each on-road system
– Light duty vehicles:      120,000 miles
– Heavy duty vehicles:    435,000 miles
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Goals of current project
• Determine if accelerated approach mimics 

behavior and deposition in long-term aging
– Can accelerated approach be used for 

evaluation of new formulations?

• Study impact of Na on emissions control 
devices
– Field-aged, long-term engine-based 

aging, and accelerated aging
– Which devices are most sensitive?

• IF impact is observed, how is it manifested?
– Performance deactivation? Poisoning?
– Materials degradation?
– Ash deposition or fouling layer?

Na
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Approach to Na introduction in 
emissions control devices
• Long-term aging studies from our partners

– ORNL received aged parts
• Evaluations and characterization 

performed
– GM: DOC+DPF system with in-spec B20
– NREL/MECA (partially accelerated) with 

very low Na-content
• LNT from DOCLNTDPF system

• Accelerated aging studies looking at Na
impact
– Aged at ORNL using high levels of Na

to isolate impact
– Studying DOC, SCR and DPF

ORNL Accelerated Aging Platform

LNT
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Schematic of engine setup and catalyst 
information

• All: 3”x6”
– ~50,000 h-1 while aging

• DOC
– Pt-based

• SCR
– Copper zeolite
– Older generation, 

model zeolite
• DPF

– Uncatalyzed, cordierite
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Accelerated aging targets Na-impact
• Introduce high levels of Na to B20 

• Two orientations evaluated
– DOCSCRDPF  

• “light duty” orientation
• with and without Na (control)

– DOCDPFSCR  
• “heavy duty” orientation

• Levels elevated to achieve 435,000k mile Na exposure
– Dioctyl sulfo-succinate sodium salt with Na:S = 1
– 5000+ ppm Na and S in B20
– Periodic soot regeneration performed
– Measure performance in bench-core reactor

• First 3” of catalysts studied
• Employ portions of the CLEERS SCR protocol
• SV = 36,000 h-1, alpha = 0.8-1.0, NO2:NO = 0 or 1
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Temperature profiles during accelerated 
engine-aging: DOCSCRDPF (light duty)

• Exotherm generated over DOC 
• SCR inlet and outlet similar
• DPF temperature decreases from inlet
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COMPARISON OF 
ACCELERATED APPROACH 

TO LONG-TERM AGING
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Field-aged systems used for comparison 
when possible

B20  DOC  DPF
• Obtained from GM

– Pt/Al2O3-based DOC 
– SiC-based DPF

• Field-aged system with B20
– 120,000 mile equivalent

• Minimal knowledge about aging details
– Na content was below specification

• Exact value unknown
– Temperature history unknown

• Unfortunately unable to secure any B20-
aged SCR catalysts
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Biodiesel and lube oil components observed in 
DOC; accelerated- and engine-aged results similar

• Na, S and P observed in DOC
– Inlet cross-sections shown with EPMA

• Long –term aged
– S throughout washcoat 
– P at surface of washcoat  
– Na observed primarily at surface 

• Primarily at inlet of DOC
• Accelerated aged

– S throughout washcoat 
– Minimal lube oil phosphorous detected
– Na observed throughout DOC 

• Equally in front and rear of DOC
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DOC minimally affected; 
similar effects shown for 
both accelerated- and 
engine-aged devices

• Analysis of fresh, engine-aged and 
accelerated Na-aged DOCs

• Both aged samples show slight 
decrease between 225°C and 300°C 
– Conversion decreases by <12%

• Oxidation of NO to NO2 is as much as 
12% higher in engine-aged DOC 
samples than in fresh
– Stay for Louise’s talk on Thursday

“The Beneficial Effect of SO2 on 
Platinum Migration and NO Oxidation 
over Diesel Oxidation Catalysts”
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SODIUM IMPACT ON SCR
DOC  SCR  DPF

ARRANGEMENT
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Na observed after accelerated aging 
throughout SCR washcoat
• Na throughout washcoat

– In bulk ~0.2%wt
• Elevated Na levels also 

observed at surface
– 0.3-0.6%wt

• Concentration of Na does 
not decrease significantly 
in the axial direction

• Low sulfur levels detected 
in SCR washcoat
– Near detection limit 
– Increased level at 

surface ~0.1%wt 

Accelerated Na-Aged SCR (from DOCSCRDPF)
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Standard SCR reaction significantly 
inhibited with Na addition
• Some aging observed for both the control and Na addition

– Illustrates some thermal effects on this model Cu zeolite SCR catalyst
• SCR with Na has significantly less activity for the standard SCR reaction
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Minimal impact when feeding equimolar
NO2:NO (fast SCR reaction)
• Minimal effects when feeding both NO2 and NO

– However, the catalyst most effected is the SCR with Na addition
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Minimal impact when feeding equimolar
NO2:NO (fast SCR reaction)
• Minimal effects when feeding both NO2 and NO

– However, the catalyst most effected is the SCR with Na addition
– Additional DOC consideration…max NO to NO2 conversion was only ~40% 
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NH3 storage decreases with aging; 
control and Na-aged show similar impact

• Significant impact on NH3 storage for both aged samples
– Similar impact suggests thermal effect is more responsible than Na
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NH3 oxidation decreases with aging
• NH3 oxidation reduced above 400°C in both aged samples

– Oxidation associated with Cu sites
– Significant difference between control and Na-aged SCR suggests Na effect



20 Managed by UT-Battelle
for the U.S. Department of Energy

Further evidence of Na impact on Cu-
sites with decreased NO oxidation
• Na-aged samples show less oxidation of NO to NO2 over entire 

temperature range
• Fresh and control show similar, albeit low reactivity
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Increasing NH3 does not improve 
performance on Na-aged SCR
• Indicates NH3 oxidation does not limit 

performance 
– NH3 breakthrough observed

• Further illustrates NO to NO2 oxidation 
is limiting performance in Na-aged 
sample
– Oxidation sites are most impacted

• Impact on control is less pronounced
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IMPACT ON SCR IN 
DOC  DPF  SCR 

ARRANGEMENT
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When DPF is in front of SCR, catalyst is 
protected from Na and its effects
• Below 400ºC, no significant effect from accelerated Na-aging if DPF is in front of SCR

– Some thermal protection is gained from being down stream of DPF
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Similar good behavior observed with fast 
SCR conditions 
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Modeling considerations of Na-impact
• What sites are being impacted?

– Results suggest oxidation sites being targeted
– If only adsorbing on oxidation sites, it may be possible to 

employ Na to selectively poison sites for kinetic studies

• Need to measure total surface area
– Is Na penetrating zeolite and causing structural collapse?

• Evidence shown by Ford using aqueous incipient wetness 
Na addition method (SAE 2009-01-2823)

• Other ongoing efforts looking at DPF integrity especially with 
respect to Na penetration into the walls
– Evidence shown by NREL and MECA collaboration and in our 

additional slides
– Highly temperature/material dependent
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Summary 
• Na can significantly impact the chemistry of 

SCR catalysis

• When placed behind a DPF the impact is 
significantly muted

• Impact of both thermal and Na aging less 
severe when feeding equimolar amounts of NO 
and NO2

• Future directions
– Is this the case for newer generation of 

zeolites?
• Focus of NREL/MECA/Ford/ORNL 

collaboration
– What is the effect at lower Na doses

• What is the limit?
• Does ASTM standard need to be 

decreased?

Na 16

0200 μm
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Additional slides
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DOC from Accelerated Na-introduction
• DOC used to generate DPF 

inlet temperature of 650C
– Incurs thermal aging

• Minimal lube oil phosphorous 
detected
– Less than 0.05%wt
– Penetration < 10 μm

• Na observed throughout DOC 
– Equally in front and rear
– Penetration through 

washcoat
– EPMA line scans

• Maximum: 0.4%wt
• Penetration: 30 μm

Inlet Middle Outlet

P

Na
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Temperature profiles during accelerated 
engine-aging: DOCSCRDPF (light duty)
• Exotherm generated over DOC (inlet 450-490°C; outlet 650-680°C)
• SCR temperature decrease from inlet to outlet

– Inlet: average 650°C, maximum 690°C; Outlet: average 600°C
• DPF temperature decreases from inlet (average 580°C) to outlet (average 580°C)
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Temperature profiles during accelerated 
engine-aging: DOCSCRDPF (light duty)
• Exotherm generated over DOC (inlet 450-480°C; outlet 670-740°C)
• SCR inlet and outlet approximately equal (average 670°C, maximum 740°C)
• DPF temperature decreases from inlet (average 670°C) to outlet (average 640°C)
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Temperature profiles during accelerated 
engine-aging: DOCDPFSCR (heavy duty)
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SCR Temperatures during aging
• Without Na addition DOCSCRDPF 

(light duty - control)
– SCR temperature decreases from 

inlet to outlet
– Tmaximum = 690°C

• Na addition DOCSCRDPF 
(light duty)
– SCR inlet and outlet equal 
– Tmaximum = 740°C

• Na addition DOCDPFSCR 
(heavy duty)
– SCR temperature decreases from 

inlet to outlet
– Tmaximum = 700°C

0

100

200

300

400

500

600

700

800

DOC‐SCR‐DPF
control (no Na)

DOC‐SCR‐DPF
Na addition

DOC‐DPF‐SCR
Na addition

SC
R 
Te
m
pe

ra
tu
re
 (°
C)

T‐Maximum Inlet T‐avg Outlet T‐avg



34 Managed by UT-Battelle
for the U.S. Department of Energy

NREL
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DPF
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Ash in GM-aged DPFs – 20:1 for Ca:Na
• Ash plugs apparent in rear of DPF
• 20x more Ca than Na detected in ash

– Ca associated with standard lube oil
• Na not detected in wall of SiC DPF
• For GM-DPF major ash contribution is from 

oil consumption 
– Unknown Na level in fuel makes further 

conclusions difficult
– Could be very low Na level in fuel

FLOWFLOW

Ash plugs in exposed DPF channels
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Na is primary ash component in 
accelerated study; no wall penetration
• High levels of S and Na 

present at mid-section of DPF
• Ash layer begins in middle and 

continues to outlet
• No significant Na penetration 

into cordierite DPF wall
– DPF periodically 

regenerated at Tavg=650°C 
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DOC‐SCR‐DPF:

DOC‐DPF‐SCR:

Inlet Middle Outlet 

Na in Accelerated Na-Aged DPFs

• In DOC-DPF-SCR configuration, level of Na contamination is doubled and penetrates 
into substrate

• Penetration into DPF substrate observed; max temperature recorded = 

Na
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LNT
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System 1: Long-term NREL-aged LNT
• Part of long-term study at NREL to 

evaluate impact of B20 
– DOC  LNT-1  LNT-2  DPF 
– 120k miles aging equivalent (750h)

• Operated at high loads to 
accelerate fuel consumption

– < 0.5 ppm Na, K and 0.1 ppm Ca
• Only LNTs provided to ORNL for analysis
• Final state was before desulfation

NREL References: SAE 2008-01-0080, SAE 2009-01-0281 & SAE 2009-01-1790
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EPMA Study of LNT-1
• Five samples obtained from front field-aged LNT 

– Dual LNT system; Rear LNT not analyzed
• Micrographs taken on each sample, with two 

micrographs being performed at separate locations 
on section 1

• Na, S, Ba, and S EPMA micrographs were obtained 
from each sample

31 42 5

RearFront

7mm 7mm 24mm 7mm 7mm 7mm8mm 8mm

31 42 5

RearFront

7mm 7mm 24mm 7mm 7mm 7mm8mm 8mm



42 Managed by UT-Battelle
for the U.S. Department of Energy

Cross-Sectional EPMA of LNT-1 

• Five samples obtained 
from front NREL-aged LNT 
– Dual LNT system
– Rear LNT not analyzed

• Na, S, Ba, and K EPMA 
micrographs were 
obtained from each 
sample

• Sulfur content is highest 
in first 10mm of front 
section

• Na layer on washcoat 
surface diminishes front 
to rear
– Top 30 microns has 

up to 0.5%wt 31 42 5

RearFront

Flow
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LNT performance primarily affected by S
• Sulfur primary 

deactivation mechanism
• Performance recovered at 

400°C after bench 
desulfation (at 700°C)

• Materials characterization  
suggests thermal effects  
impact performance at 
200 and 300°C
– i.e., B20 is not 

suspected to impact 
LNT

– Not surprising, Na will 
adsorb NOx
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Fresh LNT

• Average particle size 
in fresh LNT 
samples is 9 nm

• In fresh sample, Pt 
appears in large 
clusters containing 
numerous particles
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Engine-Aged LNT: Front

• Average particle size in 
engine-aged front LNT 
samples is 11.65 nm

• PGM sintering apparent 
as reduction in number 
of small particles and 
increase in average size

Engine-Aged LNT Front TEM Image
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Engine-Aged LNT: Rear

• Average particle size 
in rear of engine-
aged LNT samples is 
34.66 nm

• Extremely large Pt 
particles present at 
rear of engine-aged 
LNT indicate severe 
PGM sintering

Engine-Aged LNT Rear TEM Image
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