Impact of Biodiesel-based Na on Emission Control Devices

D. William Brookshear¹, Todd J. Toops², William Rohr¹, Ke Nguyen¹, and Bruce G. Bunting²

1-University of Tennessee - Knoxville 2-Oak Ridge National Laboratory

2011 CLEERS Workshop

April 19, 2011

Motivation to introduce higher levels of biodiesel fueled by many factors

- Biodiesel: alkyl ester similar to diesel fuel
- Synthesized from vegetable oil or animal fat
 - Vegetable: Soybean (~90%), rapeseed, field pennycress, jatropha, etc.
 - Several land-use debates/concerns currently ongoing
 - Animal sources: Only waste or by-products being converted at this time
- Renewable energy source that has the potential to displace a portion of the petroleum that we import from foreign sources
 - Maximum is a matter of debate and depends on source
 - Peak annual production in US: 13 million barrels (2007)*
 - Current US capacity: 53 million barrels annually*
 - 2010 Petrodiesel used in US: ~1 billion barrels

What impact could biodiesel have on emissions control devices?

- NaOH or KOH is a liquid-phase catalyst used in biodiesel synthesis
 - NaOH and KOH difficult to separate completely from products
 - Specification set at 5 ppm Na/K in B100
- Potential Na/K emissions control effects
 - ash accumulation
 - Alkali absorption into monolith walls
 - possible weakening of monolith
 - Catalyst poisoning/fouling
- Long-term durability requirements set for each on-road system
 - Light duty vehicles: 120,000 miles
 - Heavy duty vehicles: 435,000 miles

Vegetable oil + methanol

> Increased Ash Accumulation

Migration into cordierite

Goals of current project

- Determine if accelerated approach mimics behavior and deposition in long-term aging
 - Can accelerated approach be used for evaluation of new formulations?
- Study impact of Na on emissions control devices
 - Field-aged, long-term engine-based aging, and accelerated aging
 - Which devices are most sensitive?
- IF impact is observed, how is it manifested?
 - Performance deactivation? Poisoning?
 - Materials degradation?
 - Ash deposition or fouling layer?

Approach to Na introduction in emissions control devices

- Long-term aging studies from our partners
 - ORNL received aged parts
 - Evaluations and characterization performed
 - GM: DOC+DPF system with in-spec B20
 - NREL/MECA (partially accelerated) with very low Na-content
 - LNT from DOC→LNT→DPF system
- Accelerated aging studies looking at Na impact
 - Aged at ORNL using high levels of Na to isolate impact
 - Studying DOC, SCR and DPF

ORNL Accelerated Aging Platform

Schematic of engine setup and catalyst information

Accelerated aging targets Na-impact

- Introduce high levels of <u>Na</u> to B20
- Two orientations evaluated
 - DOC→<u>SCR</u>→DPF
 - "light duty" orientation
 - with and without Na (control)
 - DOC→DPF→<u>SCR</u>
 - "heavy duty" orientation

- Levels elevated to achieve 435,000k mile Na exposure
 - Dioctyl <u>sulfo</u>-succinate <u>sodium</u> salt with Na:S = 1
 - 5000+ ppm Na and S in B20
 - Periodic soot regeneration performed
 - Measure performance in bench-core reactor
 - First 3" of catalysts studied
 - Employ portions of the CLEERS SCR protocol
 - SV = 36,000 h⁻¹, alpha = 0.8-1.0, NO₂:NO = 0 or 1

Temperature profiles during accelerated engine-aging: $DOC \rightarrow \underline{SCR} \rightarrow DPF$ (light duty)

COMPARISON OF ACCELERATED APPROACH TO LONG-TERM AGING

Field-aged systems used for comparison when possible

$B20 \rightarrow DOC \rightarrow DPF$

- Obtained from GM
 - Pt/Al₂O₃-based DOC
 - SiC-based DPF
- Field-aged system with B20
 - 120,000 mile equivalent
- Minimal knowledge about aging details
 - Na content was below specification
 - Exact value unknown
 - Temperature history unknown
- Unfortunately unable to secure any B20aged SCR catalysts

Biodiesel and lube oil components observed in DOC; accelerated- and engine-aged results similar

- Na, S and P observed in DOC
 - Inlet cross-sections shown with EPMA
- Long –term aged (
 - S throughout washcoat
 - P at surface of washcoat
 - Na observed primarily at surface
 - Primarily at inlet of DOC
- Accelerated aged
 - S throughout washcoat
 - Minimal lube oil phosphorous detected
 - Na observed throughout DOC
 - Equally in front and rear of DOC

	Long-term Aging			Accelerated Aging		
	Average	Maximum	Penetration	Average	Maximum	Penetration
S	0.70%	1.00%	throughout	0.40%	0.60%	throughout
Р	n/a	8%	30 µm	n/a	<0.1%	<10 µm
Na	n/a	0.40%	30 µm	n/a	0.40%	30 µm

Accelerated-Aged DOC

1 Managed by UT-Battelle for the U.S. Department of Energy

200 um

DOC minimally affected; similar effects shown for both accelerated- and engine-aged devices

- Analysis of fresh, engine-aged and accelerated Na-aged DOCs
- Both aged samples show slight decrease between 225°C and 300°C
 - Conversion decreases by <12%</p>
- Oxidation of NO to NO₂ is as much as 12% higher in engine-aged DOC samples than in fresh
 - Stay for Louise's talk on Thursday
 "The Beneficial Effect of SO₂ on Platinum Migration and NO Oxidation over Diesel Oxidation Catalysts"

SODIUM IMPACT ON SCR DOC → SCR → DPF ARRANGEMENT

Na observed after accelerated aging throughout SCR washcoat

- Na throughout washcoat
 - In bulk ~0.2%wt
- Elevated Na levels also observed at surface
 - 0.3-0.6%wt
- Concentration of Na does <u>not</u> decrease significantly in the axial direction
- Low sulfur levels detected
 in SCR washcoat
 - Near detection limit
 - Increased level at surface ~0.1%wt

Standard SCR reaction significantly inhibited with Na addition

- Some aging observed for both the control and Na addition
 - Illustrates some thermal effects on this model Cu zeolite SCR catalyst
- SCR with Na has significantly less activity for the standard SCR reaction

15 Managed by UT-Battelle for the U.S. Department of Energy

Minimal impact when feeding equimolar NO₂:NO (fast SCR reaction)

- Minimal effects when feeding both NO₂ and NO
 - However, the catalyst most effected is the SCR with Na addition

Minimal impact when feeding equimolar NO₂:NO (fast SCR reaction)

- Minimal effects when feeding both NO₂ and NO
 - However, the catalyst most effected is the SCR with Na addition
 - Additional DOC consideration...max NO to NO₂ conversion was only ~40%

Managed by UT-Euttelle for the U.S. Department of Energy

NH₃ storage decreases with aging; control and Na-aged show similar impact

- Significant impact on NH₃ storage for both aged samples
 - Similar impact suggests thermal effect is more responsible than Na

NH₃ oxidation decreases with aging

- NH₃ oxidation reduced above 400°C in both aged samples
 - Oxidation associated with Cu sites
 - Significant difference between control and Na-aged SCR suggests Na effect

Further evidence of Na impact on Cusites with decreased NO oxidation

- Na-aged samples show less oxidation of NO to NO₂ over entire temperature range
- Fresh and control show similar, albeit low reactivity

Increasing NH₃ does not improve performance on Na-aged SCR

- Indicates NH₃ oxidation does not limit performance
 - NH₃ breakthrough observed
- Further illustrates NO to NO₂ oxidation is limiting performance in Na-aged sample
 - Oxidation sites are most impacted
- Impact on control is less pronounced

21 Managed by UT-Battelle for the U.S. Department of Energy

IMPACT ON SCR IN DOC → DPF → SCR ARRANGEMENT

When DPF is in front of SCR, catalyst is protected from Na and its effects

- Below 400°C, no significant effect from accelerated Na-aging if DPF is in front of SCR
 - Some thermal protection is gained from being down stream of DPF

Similar good behavior observed with fast SCR conditions

Modeling considerations of Na-impact

- What sites are being impacted?
 - Results suggest oxidation sites being targeted
 - If only adsorbing on oxidation sites, it may be possible to employ Na to selectively poison sites for kinetic studies
- Need to measure total surface area
 - Is Na penetrating zeolite and causing structural collapse?
 - Evidence shown by Ford using aqueous incipient wetness Na addition method (SAE 2009-01-2823)
- Other ongoing efforts looking at DPF integrity especially with respect to Na penetration into the walls
 - Evidence shown by NREL and MECA collaboration and in our additional slides
 - Highly temperature/material dependent

Summary

- Na can significantly impact the chemistry of SCR catalysis
- When placed behind a DPF the impact is significantly muted
- Impact of both thermal and Na aging less severe when feeding equimolar amounts of NO and NO₂
- Future directions
 - Is this the case for newer generation of zeolites?
 - Focus of NREL/MECA/Ford/ORNL collaboration
 - What is the effect at lower Na doses
 - What is the limit?
 - Does ASTM standard need to be decreased?

Acknowledgements

- Funding provided by DOE Vehicles Technology Program
 - Kevin Stork: Fuels & Lubricants Non-Petroleum Based Fuels
- Long-term aged emissions control parts
 - General Motors
 - Umicore, MECA
- Discussions and project development
 - Bob McCormick, Matt Thornton, Aaron Williams NREL
 - Rasto Brezny MECA

Additional slides

DOC from Accelerated Na-introduction

- DOC used to generate DPF inlet temperature of 650C
 - Incurs thermal aging
- Minimal lube oil phosphorous detected
 - Less than 0.05%wt
 - Penetration < 10 µm</p>
- Na observed throughout DOC
 - Equally in front and rear
 - Penetration through washcoat
 - EPMA line scans
 - Maximum: 0.4%wt
 - Penetration: 30 µm

²⁹ Managed by UT-Battelle for the U.S. Department of Energy

Temperature profiles during accelerated engine-aging: DOC→SCR→DPF (light duty)

- Exotherm generated over DOC (inlet 450-490°C; outlet 650-680°C)
- SCR temperature decrease from inlet to outlet
 - Inlet: average 650°C, maximum 690°C; Outlet: average 600°C
- DPF temperature decreases from inlet (average 580°C) to outlet (average 580°C)

Temperature profiles during accelerated engine-aging: DOC→SCR→DPF (light duty)

- Exotherm generated over DOC (inlet 450-480°C; outlet 670-740°C)
- SCR inlet and outlet approximately equal (average 670°C, maximum 740°C)
- DPF temperature decreases from inlet (average 670°C) to outlet (average 640°C)

Temperature profiles during accelerated engine-aging: DOC→DPF→SCR (heavy duty)

- Exotherm generated over DOC (inlet 450-480°C; outlet 650-700°C)
- DPF inlet and outlet approximately equal (average 680°C, maximum 700°C)
- SCR temperature decreases from inlet (average 680°C) to outlet (average 600°C)

SCR Temperatures during aging

- Without Na addition DOC→SCR→DPF (light duty - control)
 - SCR temperature decreases from inlet to outlet
 - $T_{maximum} = 690^{\circ}C$
- Na addition DOC→SCR→DPF (light duty)
 - SCR inlet and outlet equal
 - $T_{maximum} = 740^{\circ}C$
- Na addition DOC→DPF→SCR (heavy duty)
 - SCR temperature decreases from inlet to outlet

 $- T_{maximum} = 700^{\circ}C$

NREL

Ash in GM-aged DPFs – 20:1 for Ca:Na

EPMA of ash plugs in DPF

Ash plugs in exposed DPF channels

- Ash plugs apparent in rear of DPF
- 20x more Ca than Na detected in ash
 - Ca associated with standard lube oil
- Na not detected in wall of SiC DPF
- For GM-DPF major ash contribution is from oil consumption
 - Unknown Na level in fuel makes further conclusions difficult
 - Could be very low Na level in fuel

Na is primary ash component in accelerated study; no wall penetration

- High levels of S and Na present at mid-section of DPF
- Ash layer begins in middle and continues to outlet
- No significant Na penetration into cordierite DPF wall
 - DPF periodically regenerated at T_{avg}=650°C

S Ca 19 12 Ĥ 500. µm S Ka 15. kV 500.µm CaKa 15.kV 150 Na Ρ 131 112 75 um NaKa

Na in Accelerated Na-Aged DPFs

- In DOC-DPF-SCR configuration, level of Na contamination is doubled and penetrates into substrate
- Penetration into DPF substrate observed; max temperature recorded =

LNT

System 1: Long-term NREL-aged LNT

- Part of long-term study at NREL to evaluate impact of B20
 - DOC → LNT-1 → LNT-2 → DPF
 - 120k miles aging equivalent (750h)
 - Operated at high loads to accelerate fuel consumption
 - < 0.5 ppm Na, K and 0.1 ppm Ca
- Only <u>LNTs</u> provided to ORNL for analysis
- Final state was before desulfation

40 Managed by UT-Battelle for the U.S. Department of Energy NREL References: SAE 2008-01-0080, SAE 2009-01-0281 & SAE 2009-01-1790

EPMA Study of LNT-1

- Five samples obtained from front field-aged LNT
 - Dual LNT system; Rear LNT not analyzed
- Micrographs taken on each sample, with two micrographs being performed at separate locations on section 1
- Na, S, Ba, and S EPMA micrographs were obtained from each sample

Cross-Sectional EPMA of LNT-1

- Five samples obtained from front NREL-aged LNT
 - Dual LNT system
 - Rear LNT not analyzed
- Na, S, Ba, and K EPMA micrographs were obtained from each sample
- Sulfur content is highest in first 10mm of front section
- Na layer on washcoat surface diminishes front to rear
 - Top 30 microns has up to 0.5%wt

LNT-1 EPMA Line Scan

- Na penetration depth is approximately 30 microns and up to 1-3%wt locally
- S poisoning penetrates entire washcoat

Washcoat

LNT performance primarily affected by S

- Sulfur primary deactivation mechanism
- Performance recovered at 400°C after bench desulfation (at 700°C)
- Materials characterization suggests thermal effects impact performance at 200 and 300°C
 - i.e., B20 is not suspected to impact LNT
 - Not surprising, Na will adsorb NOx

Evaluation Temperature

Fresh LNT

- Average particle size in fresh LNT samples is 9 nm
- In fresh sample, Pt appears in large clusters containing numerous particles

Engine-Aged LNT: Front

Particle Size Distribution in Front Half of Engine-Aged

- Average particle size in engine-aged front LNT samples is 11.65 nm
- PGM sintering apparent as reduction in number of small particles and increase in average size

Engine-Aged LNT: Rear

- Average particle size in rear of engineaged LNT samples is 34.66 nm
- Extremely large Pt particles present at rear of engine-aged LNT indicate severe PGM sintering

Particle Size Distribution in Rear Half of Engine-Aged LNT