

POLITECNICO DI MILANO Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" Milano, Italy

Catalytic Mechanism, Detailed Kinetics and Converter Model for NH₃-SCR of NOx Emissions from Vehicles

10th CLEERS Workshop May 1st - 3rd, 2007 University of Michigan Dearborn, Michigan <u>E. Tronconi,</u> I. Nova, A. Grossale, C. Ciardelli, in cooperation with

DAIMLERCHRYSLER

Outline

- > Introduction and previous experience
- Approach and methods
- > NH_3 SCR over a V_2O_5 - WO_3 / TiO_2 catalyst:
 - NH₃/O₂ system
 - NO/O_2 and NO_2/O_2 systems
 - NH₃/NO/O₂ system ("Standard" SCR)
 - Chemistry & Mechanism of "Fast" SCR: role of NO₂
 - Kinetic study of the $NH_3/NO/NO_2/O_2$ system
 - Modeling & scale-up
- > NH₃ SCR over a Fe-Zeolite catalyst:
 - Comparison with V-based catalyst: reactivity, chemistry & scale-up to monoliths
- Conclusions

NH₃-SCR process for stationary sources

NH₃-SCR is a well established NO_x abatement technology for stationary sources:

$\begin{array}{l} 2\mathsf{NH}_3 + 2\mathsf{NO} + \frac{1}{2} \mathsf{O}_2 \rightarrow 2\mathsf{N}_2 + 3\mathsf{H}_2\mathsf{O} \\ ``Standard'' \,\mathsf{SCR} \,\mathsf{reaction} \end{array}$

Commercial catalysts: V₂O₅-WO₃/TiO₂ extruded honeycomb monoliths

Operating temperatures: 300 – 400 °C

Investigated at PoliMI in cooperation with ENEL during the '90s

Motivation and aim of the work

Development of a chemically consistent mathematical model of SCR monolithic converters for vehicles

study of chemistry, mechanism, kinetics of the SCR reactions over commercial V-based and zeolite catalysts with focus on characteristics of mobile applications: NO/NO_2-NH_3 reacting system, transient operating conditions...

Methods

- Transient Response reactive experiments
- Multiscale experimental approach:

Powdered catalyst (at **PoliMI**) dp~90 μm Scale: 80 - 160 mg Fit of intrinsic kinetics

Lab scale monolith catalyst (at PoliMI + DC) Scale: 3 -10 cm³

Full scale monolith catalyst (at DC) Test bench runs with real exhaust gases from Diesel engines. Scale: up to 18 - 43 liters Model validation

Experimental: microreactor rig

Microreactor model & kinetic analysis

Dynamic, isothermal, isobaric, heterogeneous 1D PFR model

Mass balances

adsorbed phase:

$$\Omega_{j} \frac{\partial \theta_{j}}{\partial t} = R_{j}$$

$$j = NH_{3}^{*}, NH_{4}NO_{3}^{*}$$

gas phase:

$$\varepsilon \frac{\partial C_i}{\partial t} = -v \frac{\partial C_i}{\partial z} + (1 - \varepsilon) R_i$$

 $i = NH_3$, N_2 , NO, NO_2 , N_2O , HNO_3

- Fitted by multiresponse nonlinear regression to transient kinetic runs
- Up to 5 exp. responses ($C_{NH3}, C_{NO}, C_{NO2}, C_{N2}, C_{N2O}$)
- •Up to 24 fitting parameters
- •Sequential fitting strategy to minimize correlation among parameter estimates
- •Up to over 50 transient kinetic runs fitted simultaneously

Experimental: monolith reactor rig

Integral reactor rig for validation experiments over honeycomb catalysts

V-based catalyst: NH₃/O₂ System

SCR dynamics and NH₃ storage

- Step feed of NH₃ on honeycomb catalyst leads to steady-state after > 20 minutes!
- No NH₃ slip observed for over 13 minutes
- Transient duration controlled by:
 - ammonia storage capacity
 - kinetics of ammonia adsorption/desorption/reaction
- NH₃ dosage strategy critical to prevent ammonia slip

NH₃ adsorption – desorption

NH₃ storage capacity

Equilibrium adsorption capacity vs. temperature for: a) powdered catalyst (POLIMI microreactor runs) b) monolith catalyst (DC runs in test rig)

V-based catalyst: NO/O₂ & NO₂/O₂ Systems

NO & NO₂ adsorption

Experimental conditions:

Flow rate 280 Ncc/min Temperature 50°C Catalyst load 100 mg NO₂ 1000 ppm O_2 2% H₂O 1%

NO₂ disproportionation route

On TiO₂: Despres et al., Appl. Catal. B 43 (2002) 389 On AI_2O_3 : Apostolescu et al., Appl. Catal. B 51 (2004) 43

V-based catalyst: NH₃ + NO/O₂ System

Transient response experiments

Experimental conditions:

GHSV = 90000-230000 h⁻¹; $C_{NO} = C_{NH3} = 0.1000 \text{ ppm}$; $C_{H2O} = 1.10\%$; $C_{O2} = 2.10\% \text{ T} = 50.550^{\circ}\text{C}$

Transient response experiments

Experimental conditions:

GHSV = 90000-230000 h⁻¹; $C_{NO} = C_{NH3} = 0.1000$ ppm; $C_{H2O} = 1.10\%$; $C_{O2} = 2.10\%$ T = 50-550°C

 $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$ "Standard" SCR

Std. SCR: Rate expressions

Std. SCR: Rate expressions

 S_1 = redox sites (associated with V)

2. Derivation of a Dual-site Redox rate law

- (a) $S_1 = O + NO \Leftrightarrow S_1 = O[NO]$
- (b) $S_2 + NH_3 \Leftrightarrow S_2[NH_3]$
- (c) $S_1 = O[NO] + S_2[NH_3] \rightarrow N_2 + H_2O + S_1 OH + S_2$
- (d) $S_1 OH + \frac{1}{4}O_2 \rightarrow S_1 = O + \frac{1}{2}H_2O$
- (e) $S_1 + S_2[NH_3] \Leftrightarrow S_1[NH_3] + S_2$

$$S_2 = acidic sites (possibly associated with W/Ti)$$

$$r_{NO} = k_{NO} \sigma_{NO} \theta_{NH3}$$

$$r_{reox} = k_{reox} C_{O2}^{1/4} \sigma_{OH}$$

NH₃ inhibition

Overall balances of S_1 - and S_2 -sites:

$$1 = \sigma_{O} + \sigma_{NO} + \sigma_{NH3} + \sigma_{OH}$$
; $1 = \theta_{free} + \theta_{NH3}$

On imposing that $r_{NO} = r_{reox}$, assuming quasi-equilibrium for steps (a) and (e) and assuming negligible surface concentration of adsorbed NO,

$$r_{NO} = \frac{k_{NO}^{o} \cdot e^{-E^{\circ}_{NO}/RT} C_{NO} \theta_{NH3}}{(1 + K_{NH3} \frac{\theta_{NH3}}{1 - \theta_{NH3}})(1 + k_{O2} \frac{C_{NO} \theta_{NH3}}{C_{O2}^{1/4}})}$$
 "Modified Redox" rate law

Std. SCR: Rate expressions

2. Modified Redox kinetics (MR)

Fit results – MR kinetics (C_{O2} = 2%)

 $C_{NO} = C_{NH3} = 1000 \text{ ppm}; C_{H2O} = 1\%;$

symbols, experimental, solid lines, model fit

Eley-Rideal vs. Redox SCR Kinetics

Simulation of NH₃+NO/O₂ fast transients over powdered catalyst

Eley-Rideal vs. Redox SCR Kinetics

Simulation of NH₃+NO/O₂ fast transients over powdered catalyst

Redox kinetics: optimal NH₃ coverage

E. Tronconi et al. AIChE J 52 (2006) 3222

V-based catalyst: NH₃ + NO/NO₂/O₂ System Chemistry & Mechanism

NO₂ promoting effect

Experimental conditions: GHSV= 210000 h⁻¹; T= 200 °C; C_{O2} = 2 %; C_{H2O} = 1%; C_{NH3} = C_{NOx} = 1000 ppm

Chemistry according to the literature

$NH_3 \Leftrightarrow NH_3^*$	(NH ₃ ads./des.)	
$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$	(NH3 oxidation)	
$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$	(standard SCR)	
$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$	(fast SCR)	
$2NH_3 + 2NO_2 \rightarrow N_2 + NH_4NO_3 + H_2O$	(Nitrate formation)	>
$2 \text{ NH}_4 \text{NO}_3 + \text{NO} \rightarrow 3 \text{ NO}_2 + 2 \text{ NH}_3 + \text{H}_2 \text{O}$	(Nitrata dacama)	
$2 \text{ NH}_4 \text{NO}_3 + \text{NO} \rightarrow 3 \text{ NO}_2 + 2 \text{ NH}_3 + \text{H}_2 \text{O}$ $\text{NH}_4 \text{NO}_3 \rightarrow \text{N}_2 \text{O} + 2 \text{ H}_2 \text{O}$) (Nitrate decomp.)	

Koebel et al., IEC Res. 40 (2001) 52

TRM experiments

Wide range of T and NO/NO_x feed ratios investigated

Reactions involved

C. Ciardelli et al. Appl. Catal. B: Environm. 70 (2007) 80

Influence of NO₂ feed content

TRM NO-NO₂/NH₃ @ 175°C

Chemistry of NO-NO₂/NH₃

I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Kónrad, *Catal. Today*, **114** (2006), 3. C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, *Chem. Commun.* **23** (2004), 2718. Also: Yeom, Sachtler et al., J. Catal. **231** (2005) 181 over BaNa-Y zeolite

Fast SCR mechanism: NO + HNO₃ reaction

NO reduces HNO₃, but NH₃ is necessary to arrive at N₂

I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catal. Today, 114 (2006), 3

V-based catalyst: $NH_3 + NO/NO_2/O_2$ System

Kinetic analysis

Kinetic analysis Reactions considered: $NH_3 \leftarrow \rightarrow NH_3^*$ $(NH_3 ads./des.)$ $NH_3 + 3/4 O_2 \rightarrow \frac{1}{2} N_2 + 3/2 H_2O$ (NH3 oxidation) (standard SCR) $NH_3 + NO + \frac{1}{4}O_2 \rightarrow N_2 + 3/2 H_2O$ NH₃ + 3/4 NO₂ → 7/8 N₂ + 3/2 H₂O (NO2-SCR) $2NO_2 + H_2O \leftarrow \rightarrow HNO_2 + HNO_3$ $(NO_2 disproportion)$ $HNO_2 + NH_3 * \rightarrow N_2 + 2H_2O$ $(NH_4NO_2 decomposition)$ $HNO_3 + NO \leftarrow HNO_2 + NO_2$ $(HNO_3 reduction by NO)$ $HNO_3 + NH_3^* \leftarrow \rightarrow NH_4NO_3^*$ (nitrate adsorption) $NH_4NO_3^* \rightarrow N_2O + 2H_2O$ $(N_2O \text{ formation})$

D. Chatterjee, T. Burkhardt, M. Weibel, E.Tronconi, I. Nova, C. Ciardelli, *SAE technical paper* 2006-01-0468.

Fit results

Global fit of more than 50 kinetic runs: $160 < T < 450^{\circ}C$; $92000 < \text{GHSV} < 210000 \text{ h}^{-1}$; $2\% < O_2 < 6\%$; $0 < \text{NO/NO}_x < 1$

Fit results: influence of NH₃/NO_x & NO/NO_x

Fit results: dynamic features

SCR dynamics are governed by ads/des of both NH₃ and nitrates! Influence of NO₂ on SCR dynamics has to be taken into account in the Urea DCU V-based catalyst: Modeling & Scale-up

Standard SCR reaction: Monolith vs. Powder

GHSV= 46000 Ncc/(h*g) Monolith (= 36000 h⁻¹)

= 45000 Ncc/(h*g) Powder

 $> O_2 = 2\%$ $H_2O = 1\%$

Role of diffusional resistances in monolithic converters

Fast SCR reaction: Monolith vs. Powder

- ➢ NH₃:NO:NO₂ = 1000:500:500 ppm
- Weight: 12.8g Monolith 0.16g Powder
- GHSV: 105000 Ncc/(h*g) Monolith (= 82000 h⁻¹)
 105000 Ncc/(h*g) Powder

 $> O_2 = 2\%$ $H_2O = 1\%$

Role of diffusional resistances in monolithic converters

Possible role of gas-phase

reactions in monolith?

Monolithic SCR Converter Model

- Extruded monoliths \rightarrow the 1D+1D model accounts also for intraporous diffusion within the catalytic substrate.

-Modeling of one representative channel.

-1D mass and enthalpy balances for gas and solid phase.

- 1D reaction-diffusion equations to account for diffusional limitations within the catalytic wall

- Evaluation of effective diffusivities $\mathsf{D}_{\mathsf{eff},\mathsf{j}}$ from morphological data according to a modified "random pore" model (Wakao-Smith).

E. Tronconi et al., IEC Res. 37 (1998) 2341 D. Chatterjee et al., *SAE technical paper* 2005-01-0965 D. Chatterjee et al., *SAE technical paper* 2006-01-0468

Monolithic Reactor Model

Transient, two-phase, single channel, 1D+1D mathematical model of SCR honeycomb reactors

Mass and enthalpy balances:

Gaseous species: j = 1,NCG

In the gas phase:

$$\frac{\partial C_j}{\partial t} = -\frac{v}{L} \frac{\partial C_j}{\partial z} - \frac{4}{d_h} k_{mt,j} \left(C_j - C_j^W \right)$$
$$\frac{\partial T_g}{\partial t} = -\frac{v}{L} \frac{\partial T_g}{\partial z} - \frac{4}{d_h} h \left(T_g - T_s \right) / (\rho_g C_p)$$

In the solid phase:

$$0 = D_{eff,j} \frac{\partial^2 C_j}{\partial x^2} + S_W^2 R_j$$
$$\frac{\partial T_s}{\partial t} = \frac{h(T_g - T_s) - \sum_{j=1}^{NCG} \Delta H_j R_{eff,j}}{\rho_s C_{p,s} S_W}$$

Adsorbed species: m=1,NCA

$$\Omega_m \frac{\partial \mathcal{G}_m}{\partial t} = R_m$$

Gas – solid continuity:

$$D = k_{mt,j} \left(C_j - C_j^W \right) + R_{eff,j}$$
$$R_{eff,j} = -\frac{D_{eff,j}}{S_W} \frac{\partial C_j^*}{\partial x} \Big|_W$$

D. Chatterjee, T. Burkhardt, B. Bandl-Konrad, T.Braun, E.Tronconi, I. Nova, C. Ciardelli, *SAE technical paper* 2005-01-965

Validation – Full monolith scale

Engine test bench measurements with different SCR catalyst configurations:

- Catalyst Volumes: 25L, 32L, 43L
- Monolith diameter of 5.66"
- Catalyst Cell densities: 200 cpsi, 300cpsi
- Wall thickness: 0.32 mm
- -Overall 100 constant engine operating points have been measured.
- Error quantification for a single operating point by means of the mean error:

 $\eta_{error,NO_x} = \frac{\int_{0}^{t_{end}} \sqrt{(\eta_{NO_x,sim.}(t) - \eta_{NO_x,exp.}(t))^2} dt}{t_{end}}$

Mean error for \mathbf{h}_{NOx} is typically lower than 4%.

Model is validated for a wide range of operating conditions.

Case of no DOC

Validation – Full monolith scale

T_{exh} = 229°C, NO₂/NO_x = 44%, GHSV = 73200h-1. , catalyst 1.8L, 300cpsi

Modeling of Integrated Aftertreatment Systems

Intrinsic kinetics

2-D (1D+1D) model of SCR monolithic converters DaimlerChrysler-ExACT

Exhaust Gas Aftertreatment Components Toolbox

- Simulation of full transient test-cycles
- Catalyst sizes/geometry pre-selection
- Assessment of variations in engine out parameters on catalyst performance
- Optimization of operating and control strategy

D. Chatterjee, 9th CLEERS Workshop, 2006

Fe-Zeolite catalyst: SCR reactivity & chemistry

work in progress

Zeolite- vs. V-based catalyst

NO\NH₃ – O₂ system: Std. SCR reaction

Zeolite vs. V-based cat. NO_x conversion V-based VO_x conversion (%) **Zeolite** 10 -Temperature (°C)

➢Zeolite is more active below 270°C

@ High T the V-based cat. exhibits 100% NO_x conversion

Standard SCR: Zeolite vs. V-based catalyst

 NH_3 +NO $/O_2$, T = 200°C : similar dynamic features due to NH_3 inhibition

Vanadium: optimum NH_3 coverage = 26%

Zeolite (washcoat powder): optimum NH_3 coverage = 17%

Std SCR on Fe-Zeolite: Monolith vs. powder

No apparent role of diffusional limitations

D. Chatterjee, T. Burkhardt, M. Weibel, I. Nova, A. Grossale, E.Tronconi, *SAE technical paper* 2007-01-1136

$NO-NO_2 \setminus NH_3 - O_2$ system: Fast SCR

Crushed monolith

Monolith

 ✓ Low T behavior dominated by NO₂ reactivity: max NO_x conversion for NO₂/NO_x= 1 (NH₄NO₃ formation)
 ✓ High T: max NO_x conversion for NO₂/NO_x = 1/2

Effect of NO₂/NOx on N₂O formation

 \checkmark N₂O formation favored by NO₂/NO_x> 1/2

V-based vs. Zeolite-based monolith catalyst

Proposed chemistry similar to V- catalysts?

Reaction Scheme for NO/NO₂ SCR over Metal-Exchanged Zeolites $2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$

 NH_3 + Brønsted acid site $\rightarrow NH_4^+$ NH_3 + acidic site $\rightarrow NH_3^{ads}$

O. Kroecher, 1st MinNOx Conference, Berlin, February 2007

Summary and Conclusions

- I. NH₃ SCR on V-based catalyst:
 - ✓ Low-T dynamics controlled by:
 - NH₃ adsorption/desorption/reaction NH₃ inhibition effects on NOx reactivity
 - storage/release of surface nitrates
 - Transient behavior quantitatively described by mechanistic kinetic model
 - Account of transport phenomena in monolithic converter model permits predictive scale-up of kinetics across five orders of magnitude
- II. NH₃ SCR on Fe-zeolite catalyst :
 - Chemistry similar to V-based catalyst: same rate expressions can be used
 - ✓ Washcoat diffusion of minor importance
 - ✓ Higher NO₂ sensitivity at low T and NO2/NOx < 50%
 - Mechanistic and kinetic analysis in progress preliminary kinetics presented at SAE 2007

- I. DaimlerChrysler for financial support
- II. Daniel Chatterjee, Thomas Burkhardt, Michel Weibel, Brigitte Bandl-Konrad and Bernd Krutzsch, DC, Stuttgart
- III. Several ChemE students at Politecnico di Milano for experimental and modeling work