

Modeling of UREA Sprays in SCR Aftertreatment

Mario F. Trujillo

Graduate Students: Doug Ryddner and Suraj Deshpande

Engine Research Center Mechanical Engineering University of Wisconsin

Acknowledgements: DOE Award DE-EE0000202

- Detailed simulations
 - UWS Spray/gaseous interactions
 - Chemical species turbulent mixing
 - Thermal mixing and its effect on UREA particle thermal decomposition
- Focus is the chamber upstream of the hydrolysis catalyst

UWS Spray Modeling with OpenFoam¹

- OpenFoam is <u>not</u> a code
 C++ libraries for mechanics problems; various solvers available
 - Urea spray solver used is a modified version existing spray solver in openfoam

¹ Distributed under GNU General Public License

• Gas phase Equations:

In addition to the LES treatment, RANS with k-ε is also exercised

UWS Spray Modeling with OpenFoam¹

- Urea-Water-Solution spray droplets
- Water vaporization¹ ($T \le 100 \text{ °C}$) (by D² Law behavior)

$$H_2N - CO - NH_2$$
 (aq) $\rightarrow H_2N - CO - NH_2$ (l or g) $+xH_2O$ (g)

$$\frac{dM_{_{H20}}}{dt} = -M_{_{H20}} \frac{6D_{_{v}}Sh \rho_{_{g}}}{\rho_{_{I}}D^{2}} \ln\left(1 + \frac{X_{_{S,i}} - X_{_{\infty,i}}}{1 - X_{_{S,i}}}\right)$$

• After water vaporization²

$$m_{urea,s}C_{urea,s} \frac{dT_{urea,s}}{dt} = Nu \ \pi \ k \ D \ (T_g - T_{urea,s}) \quad \text{for} \quad T \in (\sim 373, 425) K$$

$$\frac{dm_{urea,s}}{dt} H_{vap,fus} = Nu \ \pi \ k \ D \ (T_g - T_{urea,s}) \quad \text{for} \quad T \text{ remains constant at } 425 \ K$$

$$\left(H_{vap,fus} = 185.5 \ \text{KJ/mol, includes both fusion & vaporization}\right)$$

$$\bullet \text{ Thermal decomposition}^{1}$$

$$H_2N - CO - NH_2 \ (g) \quad \rightarrow \ \text{NH}_3 \ (g) \ + \ \text{HNCO} \ (g)$$
Arrhenius equation with $k = 4.9 \times 10^3 \exp\left(\frac{-5505}{RT}\right) \quad (\text{NO hydrolisis of } HNCO \ at the moment)$

¹ Yim et al. (Ind. Eng. Chem. Res., 2004) ; ² somewhat following Schaber et al. (Thermochimica Acta, 2004)

Mass fraction contours of H₂0 vapor

View above flow

 U_{air} = 6 m/s with LES T = 523 K

 U_{air} = 6 m/s with LES T = 723 K

 U_{air} = 6 m/s with LES T = 1150 K

Mass fraction contours of NH_3 vapor

 U_{air} = 6 m/s with LES T = 523 K View above flow

 U_{air} = 6 m/s with LES T = 723 K

 U_{air} = 6 m/s with LES T = 1150 K

Mass fraction urea in droplet field

Data from [1]

¹ Birkhold et al. (Applied Catalysis B: Environmental 2007); same conditions Uin=9.08 m/s, T=623 K

Note: differences in thermal decomposition treatment and values of Arrhenius constants

¹ Birkhold et al. (Applied Catalysis B: Environmental 2007); same conditions Uin=9.08 m/s, T=623 K

- Both turbulence effects and their modeling have a significant effect on local temp→NH₃ production→NH₃ and NO mixing
- Degree of uncertainty in the thermal decomposition process remains high
- More validation data for UWS spray is needed
 - turbulence conditions at inlet
 - A more complete characterization of spray
 - Temperature, NH₃, NO, and HNCO contour maps
- Full resolution of urea droplets will provide insight into the dominant heat/mass transfer players
 - Will employ to advance UWS spray treatment
- (Not discussed) Fully resolved heat transfer from multiple droplet impingement on liquid films