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Background: Impact of Peclet
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The characteristic length scale can vary from the largest pore size to the primary

particle size during the wall loading stage making it difficult to use a single Pe
number to define the wall loading process.
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Motivation

e New PM regulations are calling for better Particle
Number (PN) emissions and advanced regeneration
strategies. [Johnson, T.]

e DPF regeneration frequency and duration to affects
fuel economy as well as DPF life [Rose, D., and
Boger, T.]

e This requires an accurate estimate of the soot load
and hence, a more fundamental understanding of the
PM and ash accumulation process in a DPF [Gaiser,
G. and Sappok, A.]
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Objectives

e To gain fundamental understanding of the ash
deposition process within the walls of a DPF and
understand the impact of the PM deposition process
on ash accumulation

e To investigate how differences in substrate properties
can affect the PM and ash deposition process in a
DPF
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Outline

e Experimental Setup
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mar
’ Base Engine | 1-cyl. Cummins N14

Displacement | 2.3 L
Compression | 14.1:1

Ratio
‘ Bore x Stroke | 139.7 mm x
152.4 mm
Injection Common Rail
3 System
o Fuel Chevron — Generic
No. 2 Diesel
Oil Low ash, Rotella

(0.45 wt% sulfur)
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Lab Schematic
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Engine Operating Conditions

Cummins MN14 Engine Torgue Map
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different particle size
distributions.
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Concentration, dN/d(logDp) [#/cm” 3]

Characterization Results

Accumulation Mode
Mode 6
1.0E+07 =
Mode 6x
1.0E+06 + I
I (|
1.0E+05 = '
Nucleation Mode
1.0E+04 - e R
1 10 100 1000

Midpoint Diameter, Dp [nm]

4 0E+07

SEE«T

LE+T -

(11}

Tl
Ls
mi
-
=
L |

ﬁ
-
=
L |

-
L
m
-
=]
|

1.C0E+07

Totd Cancentration dbldlagho (Mjcm*T)

SOE«E -

5H.5 mm

0.0E+00

@ MG @ MBEn

University of Wisconsin -- Engine Research Center 10



Wafer Specs

Wafer Designation A B
Material Cordierite
Manufacturing Batch 3 4
Size (mm x mm) 39x315
Thickness (mm) 0.9823 0.9823
Porosity, € 0.53

Mean Pore Dia., dsg(um) 123

Washcoat Yes
Catalyst Loading 3 g/l Pt

s - |
(L - T
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DEFA System/Hot Flow
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Outline

e Previous Work
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Results - Previous Work

 Three different loading conditions were used namely; Mode
6 at 8 cm/s filtration velocity, Mode 6x at 8 cm/s and Mode 6
at 4 cm/s filtration velocity

- ¥ the filtration velocity (from 8 cm/s to 4 cm/s) = | Pe,
accelerated pore bridging, earlier peak filtration efficiency
(>100%); due to more diffusional deposition [Rakovec.N]

¥ d, .., (from ~79nm to ~59nm) => ¥ Pe, ¥ soot packing
densities; deeper wall penetration =» accelerated pore
bridging, (~250%) smaller peak particle breakthrough &
(~100%) advanced time to achieve peak filtration efficiency
[Rakovec. N, Yapaulo. R]
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Outline

e Ash Penetration Study
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Procedure — Ash penetration study

e 4 wafers were selected for each of the three loading
conditions

o Wafers were loaded using the DEFA up to a 1g/| PM
loading and regenerated at 650 °C ex-situ

e One wafer was loaded & regenerated once, another
one twice, one thrice and the last one four times

e The pressure drop, permeability and PBT history
were recorded during each loading ‘trial’
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Normalized Pressure Drop (kPa/lpm)

Effect on Pressure Drop
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Effect on Pressure Drop
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Effect on Particle Breakthrough
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Impact of ash
is different for
different
loading
conditions :

- M6-4 most
influenced
overall

- M6-8 most
influenced
after first trial
- M6x-8 least
influenced by
ash
accumulation
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Effect on Permeability Evolution

M6-4 loading
condition was most
influenced by ash
accumulation and is
shown here

- Drop in
clean/regenerated
permeability noticed
over successive trials
due to ash

- Shift in Barely Soot
Cake point due to
ash was observed.
-Total Permeability
Drop (TPD) defined
as difference
between regenerated
and loaded
permeability
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Pe ~ 1 M6-4 Pe ~ 2

M6-8

Pe ~ 1.5 e

Ash Accumulation Hypothesis

M6x-8

Mode 6-4 cm/s : Exhibits gradual change in both Total Permeability Drop as
well as Soot mass at BSC point. This could be the result of Smaller Pe
number resulting in more porous PM and hence ash accumulation within the

wafer walls.

Mode 6-8 cm/s : Exhibits large changes in both Total Permeability Drop as
well as Soot mass at BSC point after the first trial. This could be the result
of Larger Pe number resulting in less porous ash accumulation within the
wafer walls and hence a quicker transition to ash membrane formation.

-Mode 6x-8 cm/s : Least affected by ash due to smaller ash agglomerates
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High Ash Loads
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Outline

e Substrate Comparison Study
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Substrate Comparison-
Trial 1
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Substrate Comparison-
Effects of ash
raromens
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Batch A shows higher improvement in filtration efficiency (~60%) due to more
PM and hence ash accumulation within walls.
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Substrate Comparison-
Effects of ash
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Higher effect due to ash accumulation for batch A for regenerated
permeability as well as TPD. Notice very different permeability evolution
for batch A after 3 loading trials.
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Visual evidence that properties of batch B limits the amount of PM (and hence ash)
deposited within the wafer walls compared to wafers from batch A.
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Outline

e Conclusions
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Conclusions

e The ash accumulation process is similar to PM deposition. Wall loaded
ash reduces the PBT and pressure drop across the filter. No longer
beneficial at high ash loads (> 2 gpl).

e The PM deposition process appears to have a significant impact on the
ash accumulation process ~ Ash is an inherent part of diesel PM.

e The sintering process appears to be resulting in larger ash
agglomerates which have a significant impact on the subsequent PM
loading process

e The impact of ash accumulation was found to be highly dependent on
the PM mass trapped within the wafer walls which was in turn affected
by substrate properties.
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