Distributed Transient Performance of a Model Cu-Beta SCR Catalyst :

for development of Self-Diagnosing Catalyst Systems

Bill Partridge¹, Xavier Auvray², Louise Olsson², Jae-Soon Choi¹, Krish Kamasamudram³, Alex Yezerets³, Neal Currier³

1: Oak Ridge National Laboratory

2: Chalmers University Technology

3: Cummins Inc

14th DOE Crosscut Workshop on Lean Emissions Reduction SimulationApril 19, 2011University of MichiganDearborn, Michigan

U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

NTRC

Challenge: SCR catalyst are very difficult to control

- Realistic conditions very dynamic: SV, NO_x, NH₃:NO_x, Temp,....
- NH₃ storage complicates coordinating response to emissions transients
- $-NH_3$ capacity is distributed & can change w/ conditions
- Reactions can change w/ location (e.g., parasitic vs. normal NH₃ oxy zones)
- No built-in periodic trigger like w/ LNT that may be used for OBD

Approach: Need diagnostics to enable real-time catalyst control

- Evaluate static & dynamic catalyst nature
- Understand chemical & spatiotemporal relationships
- Identify control parameters
- Approach is similar to that used for LNT development

Applications: Broad practical development benefits

- Better models & design tools
- Self-diagnosing catalyst systems
- Improved efficiency, cost & durability

Experiment & Analysis has been Challenging!

- MicroReactor redesigned mid 2010
 - Improved SpaciMS capillary access
 - Improved temperature control
 - Separate gas preheat before mixing
 - Catalyst T uniformity > 99%
 - Capillaries > 195°C
 - 2x independent gas switching feeds
 - LabView microreactor control & monitoring
- MatLab analysis:
- ³ Steady state, transient & integrated analysis

Catalyst & Conditions

• Washcoat: Chalmers Model Cu-Beta zeolite

643mg sample; ca. 17.83% mass is Cu-Beta washcoat Wilken et al., Catalysis Today 151 (2010) 237-243

- Channel density: 400cpsi
- Monolith dimensions: 1" long x 0.28" OD
- Total flow: 510mL/min
- Space velocity: 30000h⁻¹
- Temperature: 200, 325 & 400°C
- Standard SCR: $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$

	NO _X	NH ₃	O ₂	H ₂ O	Kr
Step1 (clean)	200ppm	0	10%	5%	100ppm
Step2 (SCR)	200ppm	200ppm	10%	5%	100ppm
Step3 (NH ₃ saturate)	0	200ppm	10%	5%	100ppm
Step4 (clean)	200ppm	0	10%	5%	100ppm

Typical 4-Step-Protocol Data

- Step1: NO oxidation
- Step2: SS NO_x & NH₃ conversions, parasitic NH₃ oxidation, dynamic NH₃ capacity
- Step3: Unused NH₃ capacity, NH₃ oxidation
- Step4: Total NH₃ capacity

Distributed Intra-Catalyst SCR Evolution

Exit

Inlet

325°C SCR Reaction Primarily in Catalyst Front Quarter

- Half of total NO_x conversion in very front section
 - Due to entrance effect?
 - Remaining conversion to 1/4-3/8L (where NH₃ fully consumed)
- Parasitic oxidation is difference between NH₃ & NO_x conversion curves
 - PO varies from ca. 5-15% total NH₃ utilization
- Dynamic (a.k.a. Active, Used) NH₃ capacity follows NO_x conversion
 - Half of total DC is in very front catalyst section (w/ major SCR)

400°C SCR Reaction Shifts to Catalyst Front

- More NO oxidation in Step1 (not shown here)
- 84% of total NO_x conversion in very front catalyst section (<1/8L)
 - First point is actually at ca. 1/64L (0.4mm) and not 1/16L (1.6mm) as displayed
- Parasitic NH₃ Oxidation ca. 12-19%
- Dynamic NH₃ capacity mirrors NO_x conversion distribution
 - ~1/10th capacity at 325°C

200°C SCR Reaction Uniformly Distributed Along Catalyst

- NO_x conversion distributed along catalyst
- Parasitic NH₃ Oxidation ca. 10-25%
- Dynamic NH₃ capacity mirrors NO_x conversion distribution
 - ~10x capacity at 325°C

NH₃ Oxidation Changes as Move Out of SCR Zone

Observations

- Fraction of catalyst used for SCR
 - 0.5-1L @ 200°C; ~3/8L @ 325°C; <1/4L @ 400°C
 - Gradient increases w/ Temp
 - ~ half or more of total SCR occurs in very front section at 325 & 400°C
 - Need higher space velocity to spread out reaction gradients
- Parasitic NH₃ Oxidation varies w/ catalyst T & Position\Time
 - Consumes 5-25% of NH₃ (w/ model catalyst & cases studied)
 - Increased w/ temperature
 - Different than outside SCR zone (> @ 200 & $325^{\circ}C$; <> @ $400^{\circ}C$)
- Dynamic NH₃ capacity distribution mirrors SCR
 - Half or more in very front section at 325 & 400°C
 - Progressive DC through remaining SCR zone
 - $DC_{200C} \sim 10x DC_{325C} \sim 100x DC_{400C}$

Next Steps

- Improve transient instrument response model for NH₃, NO₂ & other species
 - Improved capacity calculations (Dynamic, Unused & Total)
 - Also needed for Fast SCR analysis
- Impact of hydrothermal ageing on distributed performance
- Pursue goal of "Self-Diagnosing Catalyst Systems"
 - Other conditions (e.g., SV, NH₃:NO_x, NO:NO₂) to study performance impact
 - Inhibitor impact on SCR catalyst reaction and storage distributions
 - Correlate control relationships w/ performance parameters to identify strategies for SCR-catalyst OBD
 - Developing & applying catalyst diagnostics

Acknowledgments

- U.S. DOE Office of Vehicle Technologies (Gurpreet Singh, Ken Howden)
- Cummins Inc.
- Chalmers, Competence Center for Catalysis
- ORNL, Fuels, Engines & Emissions Research Center

Thank You

Bill Partridge 865-946-1234 partridgewp@ornl.gov