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Motivation

• Exhaust aftertreatment modeling must be           
Collaborative Effort  among:

Performance engineers: Detailed cycle simulation tools

Aftertreatment domain experts/chemists: Standalone models

Control/Calibration engineers: Real time capable tools

Performance
Emissions

Aftertreatment  
Specialists

Control /
Calibration

Presenter
Presentation Notes
Exhaust aftertreatment modeling is often a collaborative model among different domain specialistsPerformance (power, torque, engine out emissions), aftertreatment (tailpipe emission), control (facilitator, engine calibration)Hi-fidelity to medium fidelity models  -----     fast and numerically efficient models
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Motivation
• Standalone aftertreatement solutions can be  “faster than 

real time”
• Example: Quasi-Steady Solution

• “faster than real time” does not necessarily indicate suitable 
for HIL (Hardware in the Loop) 

• Constrained by stiff ODE and DAE numerical solutions 
resulting in one of the following:
• Adaptive time step sizing,
• Faulty/Unstable results, prone to numerical failure 
• Becomes numerically inefficient when linked to hi-

fidelity engine model

• True HIL systems require fixed timesteps

Presenter
Presentation Notes
We may be able to run standalone model in “faster than real time”.  But it too has limitations.  (Refer to third bullet item.)  Problem get further complicated when hi-fidelity  (detailed engine) or medium-fidelity (mean-value)  engine model is added.
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Methodology

DOC SCR

Neural Network

Detailed Chemistry

• Create fast running hybrid neural network models 
derived from detailed chemistry 

• Not constrained by stiff 
ODE and DAE systems

Presenter
Presentation Notes
Generally, the bottle neck is the aftertreatment model.  We propose to resolve this bottleneck by creating an accurate but fast NN model that will be derived from the detailed aftertreatment model  
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Simulation Workflow
Experiment => calibration => Prediction

Start

GT-POWER model

GT-POWER solver

Online sensors/controls evaluating objective

Built-in DoE or 
Direct Optimizer

Initial parameters
Values

Customized 
objective function

Yes/no

Endbefore after cycle emissions prediction

Applied to TWC
Light-off  Data

All in a one integrated environment 

Altered parameters

Presenter
Presentation Notes
First step of this is to create/validate a detailed model of standalone aftertreatment model.  Here is an example how a TWC model was created and its kinetic parameters are identified based on experimental data.  The basic idea is that once a model has been validated, it can be used to generate data for training a NN model.  The model can be run over large matrix of operating points.
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Neural Network Training
• Three-Layer Feedforward Neural Network 

2 hidden layers with tan-sigmoid activation functions
1 output layer with linear activation function 

• Levenberg-Marquardt algorithm for training
• Excellent Neural Network generalization capability

Fixed balanced penalties 
Adjustable penalties (“Bayesian Regularization”)
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Wnx
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Presenter
Presentation Notes
The NN used consists of three layers feed-forward type (two hidden + one output layer).  Without going into to much detail (it is in the paper),  the objecting function has two terms. One is a sum square error and the other is sums of matrix elements of weights and sum of vectors of biases of the two input layers and, sum of vector weights of output layer. This objective function, together with the Bayesian Regularization algorithm for choosing the penalty for each term, ensures a fine balance between goodness of fit on the training data and capability to accurately predict the output when presented with fresh input data
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Detailed DOC Model
R1: CO + 0.5O2 → CO2
R2: C3H6 + 4.5O2 → 3CO2 + 3H2O
R3: C3H8 + 5O2 → 3CO2 + 4H2O
R4: CO + NO → CO2 + 0.5N2
R5: H2 + 0.5O2 → H2O
R6: NO + 0.5O2 → NO2
R7: NO2 → NO + 0.5O2

• DOC Reaction Set:

• Inputs to DOE of DOC model:

• DOE of 5000 cases using Latin Hypercube

Inlet condition Min Max
Catalyst Wall Temp. (K) 280 800
Inlet mass flow rate (kg/s) 0.001 0.15
NO mole fraction 0.0 4.0e-4
NO2 mole fraction 0.0 4.0e-4
CO mole fraction 0.0 0.002
Total HC mole fraction 0.0 1.5e-4

Θ

Presenter
Presentation Notes
Comprises of typical DOC reaction set, slow and fast HC oxidation, direct and NO assisted CO oxidation and simple NO/NO2 oxidation kinetics 
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Detailed DOC Model

CO

HC

NO

Full model development described in SAE 2008-01-0866

Presenter
Presentation Notes
CO, we don’t capture transition quite right, HC, there are in fact many HC’s, but we only model 2.35,0000/hr
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DOC NN Training Results

CO %
Conversion

HC %
Conversion

NO [PPM] NO2 [PPM]

Presenter
Presentation Notes
Data was generated using 5000 simulations.  85% of the data were used to obtain the NN fit.  The remaining 15% were used for assessment of goodness of fit. The two sets of data are partitioned via a random selection process. The goodness of fit is demonstrate in the above figure. 
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Detailed SCR Model
• SCR Reaction Set:

• Inputs to DOE of SCR model:

• DOE of 5000 cases using Latin Hypercube

Inlet condition Min Max
Catalyst Wall Temp. (K) 280 800
Inlet mass flow rate (kg/s) 0.001 0.15
NO mole fraction 0.0 4.0e-4
NO2 mole fraction 0.0 4.0e-4
NH3 mole fraction 0.0 6.0e-4
Coverage  0.0 1.0

Θ

R8:
R9:
R10:
R11:
R12:
R13:

NH3 + S
NH3(S)
4NH3 + 3O2
4NH3 + 4NO +O2
8NH3(S) + 6NO2
4NH3(S) +2NO +2NO2

=> NH3(S)
=> NH3 + S
=> 2N2 + 6H2O
=> 4N2 + 6H2O
=> 7N2 + 12H2O + 8S
=> 4N2 + 6H2O + 4S

Presenter
Presentation Notes
Very similar to DOC in the methodology.  However, note that mechanism contains surface reaction. In addition to input temperature and concentrations, we have an additional variable. This is the coverage or the  amount of NH3 bound to the  active sites.
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Calculation of Storage Capacity
• Experimental results suggest more NH3 desorbed 

than could be accounted for by absorption
• Two possibilities exist: 

1. experimental error in one or both NH3 sensors
2. NH3 is pre-stored

Presenter
Presentation Notes
In order to calculate the coverage, we had to determine the storage capacity of the catalyst.  This was done with the aid of a series of TPD experiments. The catalyst was first saturated with NH3. When input and output concentration become equal NH3 is shut off and inlet temperature is ramped up.  This causes desorption of the NH3.  From this desorption rate it was possible to calculate the storage capacity.
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Storage Capacity (cont.)

• The onset of saturation and shape of 
saturation curve indicated by the exit NH3
sensor seemed to be consistent

• Optimization  was performed to determine:
– storage capacity
– pre-stored NH3 (if any)  

• Optimization goal:
– conserve NH3 mass 
– conserve onset/shape of  NH3 saturation 

curve
• Built-in Brent direct optimizer was used

Presenter
Presentation Notes
The technique is basically fitting a storage capacity and initial coverage that matches the desorption characteristics of the catalyst under TPD.  A optimization method was used (Brent Optimizer) to find these parameters.
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Storage Capacity (cont.)

• A pre-storage corresponding to 45% coverage 
and a storage capacity of 4.9E-3gmole/m^2 
were determined

• These generally agree with all experiments 

Presenter
Presentation Notes
A simulation using the identified parameters match the characteristics very well
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Standard Reaction

Presenter
Presentation Notes
Validation was done via various TPD experiments.  This facilitated parameter identification for one reaction at a time.  This one is for standard SCR reaction.
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Validations

Fast: 4NH3 + 2NO + 2NO2 => 4N2 + 6H2O

Standard: 4NH3 + 4NO + O2 =>4N2 + 6H2O

Presenter
Presentation Notes
Equi-molar NO and NO2 were introduced after NH3 was shut off.  This one is for fast SCR reaction.
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Emission Predictions (cont.)
• All sites “open” (no NH3 prestored)

• Cumulative Mass Changes:
NO   = -28% NOX = -37%
NO2 = -49% NH3 = -100%

Presenter
Presentation Notes
NEDC cycle was simulated.  Results were found to be within a few percents of the measurement.
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SCR NN Training Results

NO [PPM] NO2 [PPM]

NH3 [PPM] Outlet Gas 
Temp [K]

Presenter
Presentation Notes
Again 5000 cases were run to generate data.  Each run took about 10 seconds for a total simulation time of approx. 14 hours.
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SCR NN Training data
Duration =10-100*residence time

MFR
Tinlet

{Ci}
Twall

Coverage
NH3

Toutlet
{Ci}

Imposed in the Steady State DOE used to train NN
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SCR NN Training data
Transient/NEDEC

MFR
Tinlet

{Ci}
Twall

Coverage
NH3

Toutlet
{Cj}

Cannot be imposed in transient, 
depends on previous state 
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Dynamics Modeling

• GT-POWER uses “static” neural networks

• Static Neural Networks 
• Can model “transients” based on successive 

steady states (quasi-steady) – ideal for IMEP, 
Vol Eff, etc.

• Does NOT account for dynamics modeling 
(history of events)   

• For exhaust aftertreatment modeling there is 
additional  dynamic phenomena
• Catalyst wall temperatures
• Storage affects  

Presenter
Presentation Notes
Read from the slide.  This has a pretty good verbose.   Third bullet item should be stressed.
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Catalysts Wall Temperature
SCR Heat Flux (kW)DOC Heat Flux (kW)

(1) Static Neural Networks Accounts for:
• internal heat transfer
• catalytic heat release

(2) Transient Physical Model Accounts for:
• wall temperature solution

dt
dTCmQ pFlux ⋅⋅=

chemistryQconvectionQFluxQ +=

Presenter
Presentation Notes
This is handled by simple physical model. NN used to compute heat fluxes from gas to wall and heat of reactions, and then a lumped conduction model is used to compute the wall temp. history.
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SCR NH3 Coverage Models

• NH3 absorption/desorption is a “dynamic” 
phenomenon

• Detailed models calculates “coverage” of stored 
NH3 (amount of NH3 stored on the surface)

NH3

Single Site “S”
SNH3

NH3

Presenter
Presentation Notes
Similarly, we need to integrate to find the correct state for the coverage.  
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SCR NH3 Coverage Models

STORE3REDUCE3OUT3IN3 NH NH  NHNH ++=

(1) NH3 conservation

(2) NH3 In = 
( )dtmole/sNH

t

0
3Inlet∫=IN3NH

(3) NH3 Out = = NHOUT3 ( )dtmoles/sNH
t

0
3Outlet∫

(4) NH3 Reduce 
-amount needed to reduce NOX 
-assume 1 mole NH3 required to reduce 1 mole NOX= 

( ) ( )( ) ( ) ( )( )∫∫ +−+
1

0
2

1

0
2 NO  NO NO  NO dtoutoutdtinin= NHREDUCE3

Based on Equations n 1-4, solve for = 
STORE3NH

(5) Coverage= 
Capacity) (SiteNH

(STORE)NH
   Coverage

3

3=Θ

Presenter
Presentation Notes
NH3in is imposed.NH3out is from NNNH3reduced is from assumption (4).  In fact we could relax this assumption and make the factor an output variable. We are currently working on it. NH3store is computed from (1)
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SCR NH3 Coverage Models

Presenter
Presentation Notes
However, for most cases the assumption seems to be good.  We ran a typical NDEC simulation. These are all outputs of detailed model, which confirms the validity of previous slide’s assumptions.  
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SIL/HIL Model Generation

• Consist of Neural Networks or physical models
• No detailed chemistry or flow is modeled 

Presenter
Presentation Notes
Just to summarize, here is what we have.  This is an hybrid approach. We have static NNs and physical models that account for the dynamic effects.  Note that static NN models are robust. Easy to implement and ensures uniformity and adequate space coverage. On the other hand vast majority of the dynamic system identification methods ( e.g. ARX) require the use of time sequence inputs. These has to persistently excite the system and at the same time must be physically realizable.  These may render training a challenging task and often cannot be automated. Furthermore, physical models are free from training error. 



26

Motivation

Methodology

Neural 
Network

DOC Model 

SCR Model

Dynamics 
Modeling

Thermal 
Model

Coverage 
Model

Hil/SIL
Model

Speed
Accuracy

Conclusion

12th DOE Crosscut Workshop

SIL/HIL Enabled NN-AT Model
DOC Results

CO

HC NO

NO2

Wall Temperature

Presenter
Presentation Notes
Oxidation of CO, HC and NO predicted kinetics-based detailed model reproduced well by the NN model.  The temperature agreement between lumped physical model and detailed model is also very good. 
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SIL/HIL Enabled NN-AT Model
SCR Results

NO

NO2

NH3

NH3 Coverage

Wall Temperature

Presenter
Presentation Notes
Here again the comparison is satisfactory between the detailed and NN-model.  There is some descrepancy in the coverage.  It is possibly a cumulative effect of the departure from 1:1 conversion ratio assumption.  This is currently being investigated. 
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SIL/HIL Enabled Engine/NN-AT Model

Presenter
Presentation Notes
What we have achieved is a reasonably hi-fidelity hybrid NN model which is SIL/HIL enable. 
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Model Type Solver CPU

Standalone Kinetic AT QS 90s

Standalone Neural Network AT Explicit 2s

Detailed Engine + Kinetic AT Explicit 60h

MV Engine + Kinetic AT Explicit 39h

MV Engine (Explicit) + Kinetic AT (QS) Mixed 635s

MV Engine + Neural Network AT Explicit 625s

MV Engine + Neural Network AT GT-Suite RT 331s

Computational Speed Comparison
(1180s NEDC )
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Conclusion

• A Quasi-steady (QS) based solver have been 
implemented that  conserves accuracy of the 
computationally demanding fully explicit solver 

• Calibration of global kinetics  was  shown to be 
computationally efficient  using DOE direct optimizers

• Feasibility  of  SIL/HIL compatible NN model 
generation was demonstrated using detailed kinetic  
model

• NN model was improved using a hybrid methodology 
that improved the fidelity of the system model
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Conclusion (cont.)

• Hybrid methodology includes:
• Static Neural Networks: 

(1) DOC and SCR emission modeling
(2) Heat Flux into catalyst walls

• Dynamic Models: 
(3) Thermal Models
(4) Coverage Model for NH3 absorption  

• Methodology preserves overall accuracy of detailed 
models
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