

Development of Real Time Catalyst Model for Engine & Powertrain Control Design

S. Wenzel, B. Despujols, S. Wahiduzzaman, I. Papadimitriou Gamma Technologies Inc., Westmont, IL, USA

12th DOE Crosscut Workshop on Lean Emissions Reduction Simulation April 28th - 30th, 2009 University of Michigan - Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128

ullet

Exhaust aftertreatment modeling must be

Motivation

Methodology

Neural Network

DOC Model

SCR Model

Dynamics Modeling

> Thermal Model

Coverage Model

> Hil/SIL Model

Speed Accuracy

Conclusion

<u>Collaborative Effort</u> among: Performance engineers: Detailed cycle simulation tools Aftertreatment domain experts/chemists: Standalone models

Control/Calibration engineers: Real time capable tools

Performance Emissions

Aftertreatment Specialists Control / Calibration

- Standalone aftertreatement solutions can be "faster than real time"
 - Example: Quasi-Steady Solution
 - **"faster than real time"** does not necessarily indicate suitable for HIL (Hardware in the Loop)
- Constrained by stiff ODE and DAE numerical solutions resulting in one of the following:
 - Adaptive time step sizing,
 - Faulty/Unstable results, prone to numerical failure
 - Becomes numerically inefficient when linked to hifidelity engine model
 - True HIL systems require fixed timesteps

12th DOE Crosscut Workshop

Neural Network

Motivation

DOC Model

SCR Model

Dynamics Modeling

> Thermal Model

Coverage Model

> Hil/SIL Model

Speed Accuracy

Conclusion

Methodology

Create fast running hybrid neural network models derived from detailed chemistry

Neural Network Training

- Three-Layer Feedforward Neural Network
 - ✓ 2 hidden layers with tan-sigmoid activation functions
 - ✓ 1 output layer with linear activation function
- Levenberg-Marquardt algorithm for training
 - Excellent Neural Network generalization capability
 - ✓ Fixed balanced penalties
 - ✓ Adjustable penalties ("Bayesian Regularization")

6

Methodology

Motivation

Network

۲

- SCR Model
- Dynamics Modeling
 - Thermal Model
- Coverage Model
 - Hil/SIL Model
- Speed Accuracy
- Conclusion

Detailed DOC Model

Detailed DOC Model

^{Conclusion} Full model development described in SAE 2008-01-0866

Detailed SCR Model

• SCR Reaction Set:

	R	8: NH ₃	+ S	=> NH	₃ (S)			
	R	9: NH ₃	(S)	=> NH	3 + S			
Motivation	R	10: 4NH	$_{3} + 3O_{2}$	=> 2N ₂	+ 6H ₂ O			
Methodology	R	11: 4NH	$\frac{1}{3} + 4NO + O_2$	=> 4N ₂	+ 6H ₂ O			
Neural Network	R	12: 8NH	$_{3}^{2}(S) + 6NO_{2}^{2}$	=> 7N ₂	+ 12H ₂	O + 8S		
DOC Model	R	13: 4NH	3(S) +2NO +2NO	$_{2} => 4 N_{2}^{2}$	+ 6H ₂ O	+ 4S		
SCR Model	Inputs to DOE of SCP model:							
Dynamics								
Dynamics								
Modeling		In	let condition		Min	Мах		
Modeling Thermal Model		In Ca	let condition atalyst Wall Temp	. (K)	Min 280	Max 800		
Modeling Thermal Model Coverage		In Ca In	let condition atalyst Wall Temp et mass flow rate	. (K) (kg/s)	Min 280 0.001	Max 800 0.15		
Modeling Thermal Model Coverage Model		In Ca In NO	let condition atalyst Wall Temp et mass flow rate D mole fraction	. (K) (kg/s)	Min 280 0.001 0.0	Max 800 0.15 4.0e-4		
Modeling Thermal Model Coverage Model Hil/SIL Model		In Ca In NO	et condition atalyst Wall Temp et mass flow rate D mole fraction D ₂ mole fraction	. (K) (kg/s)	Min 280 0.001 0.0 0.0	Max 800 0.15 4.0e-4 4.0e-4		
Modeling Thermal Model Coverage Model Hil/SIL Model Speed		In Ca In NO NO	et condition Atalyst Wall Temp et mass flow rate D mole fraction D_2 mole fraction H_3 mole fraction	. (K) (kg/s)	Min 280 0.001 0.0 0.0 0.0	Max 800 0.15 4.0e-4 4.0e-4 6.0e-4		
Modeling Thermal Model Coverage Model Hil/SIL Model Speed Accuracy		In Ca In NO NO NO NO	et condition Atalyst Wall Temp et mass flow rate D mole fraction D_2 mole fraction H_3 mole fraction overage	. (K) (kg/s)	Min 280 0.001 0.0 0.0 0.0 0.0	Max 800 0.15 4.0e-4 4.0e-4 6.0e-4 1.0		

• DOE of 5000 cases using Latin Hypercube

CILICIER Calculation of Storage Capacity

- Experimental results suggest more NH₃ desorbed than could be accounted for by absorption
 - Two possibilities exist:

Motivation

Neural

Network

DOC Model

SCR Model

Dvnamics

Modeling

Thermal Model

Coverage Model

> Hil/SIL Model

Speed Accuracy

Conclusion

Methodology

1. experimental error in one or both NH₃ sensors

2. NH₃ is pre-stored

Storage Capacity (cont.)

Motivation Methodology Neural Network **DOC Model** SCR Model **Dynamics** Modeling Thermal Model Coverage Model Hil/SIL Model Speed

Accuracy

Conclusion

- The onset of saturation and shape of saturation curve indicated by the exit NH₃ sensor seemed to be consistent
- Optimization was performed to determine:
 - storage capacity
 - pre-stored NH₃ (if any)
 - Optimization goal:
 - conserve NH₃ mass
 - conserve onset/shape of NH₃ saturation curve
- Built-in Brent direct optimizer was used

Storage Capacity (cont.)

Motivation Methodology Neural Network **DOC Model** SCR Model **Dynamics** Modeling Thermal Model Coverage Model Hil/SIL Model Speed Accuracy Conclusion

- A pre-storage corresponding to 45% coverage and a storage capacity of 4.9E-3gmole/m² were determined
- These generally agree with all experiments

Standard Reaction

Validations

Fast: $4NH_3 + 2NO + 2NO_2 => 4N_2 + 6H_2O$

Emission Predictions (cont.)

All sites "open" (no NH₃ prestored) \bullet

12th DOE Crosscut Workshop

1166

SCR NN Training Results

SCR NN Training data

Duration =10-100*residence time

SCR NN Training data

Transient/NEDEC

Conclusion

Cannot be imposed in transient depends on previous state

۲

 \bullet

Dynamics Modeling

• GT-POWER uses "static" neural networks

Motivation

- Methodology
 - Neural Network
 - DOC Model
 - SCR Model
 - Dynamics Modeling
 - Thermal Model
 - Coverage Model
 - Hil/SIL Model
 - Speed Accuracy
 - Conclusion

- Static Neural Networks
 - Can model "transients" based on successive steady states (quasi-steady) – ideal for IMEP, Vol Eff, etc.
 - Does NOT account for dynamics modeling (history of events)
- For exhaust aftertreatment modeling there is additional dynamic phenomena
 - Catalyst wall temperatures
 - Storage affects

Catalysts Wall Temperature

SCR NH₃ Coverage Models

SCR NH₃ Coverage Models

(1) NH₃ conservation

 $NH_{3IN} = NH_{3OUT} + NH_{3REDUCE} + NH_{3STORE}$ (2) $NH_3 In$ **Motivation** Methodology Neural Network (3) NH_3 Out **DOC Model** (4) NH_3 Redu SCR Model -amount **Dynamics** Modeling -assume Thermal Model NH_R Coverage Model **Based on E** Hil/SIL Model Speed (5) Coverage Accuracy Conclusion

$$NH_{3IN} = \int_{0}^{t} NH_{3}Inlet(mole/s)dt$$

$$NH_{3OUT} = \int_{0}^{t} NH_{3}Outlet(moles/s)dt$$
uses
needed to reduce NO_x
1 mole NH₃ required to reduce 1 mole NO_x

$$H_{2EDUCE} = \int_{0}^{t} (NO(in) + NO_{2}(in))dt - \int_{0}^{t} (NO(out) + NO_{2}(out))dt$$
Equations n 1-4, solve for NH_{3STORE}

$$MH_{3}(STORE)$$

$$NH_{3}(Site Capacity)$$

CITERS SCR NH3 Coverage Models

24

¹²th DOE Crosscut Workshop

SIL/HIL Model Generation

Conclusion

ightarrow

•

Consist of Neural Networks or physical models No detailed chemistry or flow is modeled

SIL/HIL Enabled NN-AT Model DOC Results

SIL/HIL Enabled NN-AT Model SCR Results

(1180s NEDC)

Μ

	Model Type	Solver	CPU
Motivation	Standalone Kinetic AT	QS	90s
ethodology Neural Network	Standalone Neural Network AT	Explicit	2s
DOC Model SCR Model	Detailed Engine + Kinetic AT	Explicit	60h
Dynamics Modeling Thermal Model	MV Engine + Kinetic AT	Explicit	39h
Coverage Model	MV Engine (Explicit) + Kinetic AT (QS)	Mixed	635s
Hil/SIL Model Speed Accuracy	MV Engine + Neural Network AT	Explicit	625s
Conclusion	MV Engine + Neural Network AT	GT-Suite RT	331s

۲

Conclusion

Motivation Methodology

> Neural Network

DOC Model

SCR Model

Dynamics Modeling

> Thermal Model

Coverage Model

> Hil/SIL Model

Speed Accuracy

Conclusion

- A *Quasi-steady* (*QS*) based solver have been implemented that conserves accuracy of the computationally demanding fully explicit solver
- Calibration of global kinetics was shown to be computationally efficient using DOE direct optimizers
- Feasibility of SIL/HIL compatible NN model generation was demonstrated using detailed kinetic model
- NN model was improved using a hybrid methodology that improved the fidelity of the system model

Conclusion (cont.)

- Hybrid methodology includes:
 - Static Neural Networks: \mathbf{O}
 - (1) DOC and SCR emission modeling
 - (2) Heat Flux into catalyst walls
 - **Dynamic Models:** •
 - (3) Thermal Models
 - (4) Coverage Model for NH₃ absorption
 - Methodology preserves overall accuracy of detailed models

DOC Model

•

SCR Model

Motivation

Neural Network

Methodology

Dynamics Modeling

> Thermal Model

Coverage Model

> Hil/SIL Model

Speed Accuracy

Conclusion