

Progress in DOC, DPF and SCR Simulation

Roland Wanker Johann C. Wurzenberger

Contents

- Aftertreatment Simulation Strategy
- Aftertreatment Simulation Workflow
- Examples
 - 1D: <u>DOC</u> Light-Off and NEDC Cycle with HC Storage
 - 3D: <u>SCR</u> Spray with Multi-Component Evaporation
 - 1D/3D: <u>DPF</u> Flexible Channel Geometry and Filtration Model
- Summary

AVL Aftertreatment Simulation Strategy, I **Reduction of Diesel Engine Emission** Drive Cycle **Pollutant Formation** e.g. NEDC, FTP, ... Vehice Simulation Passenger Compartment cruise Underhood Flow **Aftertreatment** load signal torque **Engine Simulation** boost ECU Gas Dynamic Combustion -**System Control** ane takate rita i Pipe Flow Pollutants Catalyst 🔄 Vehicle Data 🗉 🦛 # Vehicle Vehicle: Rear Right Fi H # Engine Vehicle: Front Right + # Clute **General Species Transport** tili # Gear Box 11 CE E # Single Batio T the Wheel 🖥 🖬 Wheel 井 H Wheel Engines ti Wheel Stake 19 Januaria Monitor wall heat flux wall temperature Beetrical MA 中 Thermal Network 1 II Differentia 歔 奇 # Cockpit 奇 # Cockpit 恐c # Anti Slip Contro # AVL Exhaust System # AVL Exhaust System # AVL Exhaust System # Monitor •=• Coolant Circuit Heat Sources Project Data 🗉 🧰 Settings Ø ASC Vehicle Task Folde 12 CHARACTER ront Disc Bra Structure -E 🗋 Variation 🗄 🧰 Cycle Rur 🕀 🧰 Variat Oil Circuit

Aftertreatment Simulation Strategy, II

Integration	 Identical Physical and Chemical Aftertreatment Models BOOST 1D standalone BOOST 1D coupled with engine BOOST 1D coupled with engine and vehicle BOOST 1D as s-function in Matlab/Simulink FIRE 2D/3D standalone
Application	 Dedicated Kinetic Models for each Specific Application Diesel Oxidation Catalyst Diesel Particulate Filter (DPF, CSF) Selective Catalytic Reduction (SCR) NOx Trap Catalyst Three Way Catalyst
Flexibility	 Customer's Proprietary Kinetic Models Use BOOST 1D Aftertreatment as Platform User Coding Interface allows 100% Access to all Feature

Aftertreatment Simulation Workflow

Contents

- Aftertreatment Simulation Strategy
- Aftertreatment Simulation Workflow
- Examples
 - 1D: <u>DOC</u> Light-Off and NEDC Cycle with HC Storage
 - 3D: <u>SCR</u> Spray with Multi-Component Evaporation
 - 1D/3D: <u>DPF</u> Flexible Channel Geometry and Filtration Model
- Summary

DOC Kinetic Model

• AVL BOOST/FIRE pre-defined DOC kinetic model $CO + 1/2O_2 \longrightarrow CO_2$ $C_3H_6 + 9/2O_2 \longrightarrow 3CO_2 + 3H_2O$ $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$ $2NO + O_2 \longleftrightarrow 2NO_2$

• extended by:

$$\begin{array}{l} \mathrm{C}_{3}\mathrm{H}_{6} + \mathrm{Me} \leftrightarrow \mathrm{C}_{3}\mathrm{H}_{6}\left(\mathrm{Me}\right) \\ \\ \dot{r} = A_{3} \cdot \exp\left(\frac{-A_{4}}{T}\right) \cdot A_{\mathrm{spec}} \cdot \left(y_{\mathrm{HC}} - y_{\mathrm{HC},\mathrm{eq}}\right) \\ \\ \end{array}$$

 $y_{\rm HC,eq}$ ightarrow equilibrium mole fraction

DOC Kinetic Model: HC Storage

Langmuir Isotherm:

$$z_{
m HC,eq} = z_{
m HC,max}\left(T
ight) \cdot rac{y_{
m HC,eq}}{A_1 \cdot \exp\left(rac{-A_2}{T}
ight) + y_{
m HC,eq}}$$

DOC: Model Parameterization using Light-Off Data

 Parameter identification using DOE in combination with direct optimization tools

DOC: Influence of HC storage on a NEDC cycle simulation

Passenger Car NEDC cycle test

Contents

- Aftertreatment Simulation Strategy
- Aftertreatment Simulation Workflow
- Examples
 - 1D: <u>DOC</u> Light-Off and NEDC Cycle with HC Storage
 - 3D: <u>SCR</u> Spray with Multi-Component Evaporation
 - 1D/3D: <u>DPF</u> Flexible Channel Geometry and Filtration Model
- Summary

SCR, V-HSO System

Progress in SCR spray simulation

Spray / gas phase:

- multi-component evaporation
- urea/water mixture properties
- thermolysis
- hydrolysis

Spray wall interaction:

- multi-component evaporation
- heat conduction in solid walls via lateral heat conduction
- heat transfer between droplets and wall
- wall temperature dependent splashing model

Multi-component evaporation model with integrated urea thermolysis

Advanced Simulation Technologies

 Based on Abramson/Sirignano single component model with balances for mass and heat transfer in gas film around drop

$$\Rightarrow \dot{m} = 2 r_s \pi \frac{\overline{\lambda}_f}{\mathcal{C}_{p,v}} N u^* \ln(1 + B_h)$$
$$\Rightarrow \dot{m}_i = 2 r_s \pi \overline{\rho}_f \overline{D}_{ia} Sh_i^* \ln(1 + B_{m,i})$$

 $\dot{m} = \sum_{i=1}^{N} \dot{m}_{i}$

 Coupled equations for mass transfer and heat flux entering the drop solved with iterative procedure

- Arrhenius approach for thermolysis: $\frac{dm_{urea}}{dt} = -\pi D_d A \cdot \exp\left(-\frac{E_a}{RT}\right)$
- Evaporation
- Thermolysis

Hydrolysis

 $H_{2}O(l) \longrightarrow H_{2}O(g)$ $(NH_{2})_{2}CO(sorl) \xrightarrow{\Delta H = +185.5 \text{kJ/mol}} NH_{3}(g) + HNCO(g)$

HCNO (g)+
$$H_2O(g) \longrightarrow NH_3(g)+CO_2(g)$$

Testcase with 30000 cells (65 kg/h, 10 mg AdBlue per pulse)

HCNO, NH3 and SMD evolution Test case with wallfilm (intermediate grid with 30000 cells) 8e-05 දේවේද and and 6e-05 SMD [m] and 4e-05 mass fraction [-] pp^{Rees}t^{Re}ender 2e-05 -288 -OHCNO -D NH3 🛧 Sauter mean diameter o 🚧 1 2 з time /s

Advanced Simulation Technologies

AVL

3 May, 2007 | Page 15

Spray Angle and Pattern is Adapted to Spray Box Measurement

Urea Distribution Study I

Investigation of urea vapor distribution during steady-state operating conditions

Impact of different pipe/injection geometries

Fire

Base configuration

CLEERS, Dearborn, May 2007 | Page 17

Contents

- Aftertreatment Simulation Strategy
- Aftertreatment Simulation Workflow
- Examples
 - 1D: <u>DOC</u> Light-Off and NEDC Cycle with HC Storage
 - 3D: <u>SCR</u> Spray with Multi-Component Evaporation
 - 1D/3D: <u>DPF</u> Flexible Channel Geometry and Filtration Model
- Summary

Generic Wall Flow DPF Model

- Different Channel Diameters (Octo-Square, Asymmetric Channels, Wavy-Cells)
- Inlet/Outlet Plugs
- Ash as Layer, Plug or Combination
- Deposition as in Depth and Cake Layers
- →Impact on Pressure Drop Model
 →Impact on Deposition and Regeneration Model

Loading and Δp due to Depth/Cake Filtration

Pressure Drop Split into Depth and Cake Portions

Soot Mass Split in a Depth and Cake Layer

Summary

- ✓ Catalyst and DPF Models
 - ✓ robust solvers
 - ✓ validated models for DOC, SCR, DPF,...
 - ✓ automatic parameter identification (DOE and optimization)
- ✓ Integration of Aftertreatment Simulation
 - ✓ standalone 1D and 3D
 - engine combustion and pollutant formation fully integrated with exhaust line and reactive aftertreatment devices
 - vehicle + engine + emissions (measured) linked with exhaust line and reactive aftertreatment devices