Modeling Pressure Drop of Wall-Flow Diesel Particulate Filters

Part 2: Model for Soot-Loaded Filters

Mansour Masoudi

October 2001, Detroit, MI CLEERS NOx Trap / DPF Modeling Workshop

DPF Pressure Drop -- Highlight

- DPF "pressure drop" is the manifestation of <u>Hydrodynamic</u> response of honey comb structure to exhaust gas flow <u>through</u> it.
- A hydrodynamic (fluid mechanics) problem.
- "Internal flow" type.

Various Flow Regimes In a Wall-Flow Filter

Various flow patterns in different zones of a wall-flow filter:
 Flow in zone 1: free-shear flow, dominated by local contraction.
 In 2 (shaded area): developing boundary layer dominated by wall-friction.
 In 3 (densely dotted area): mostly axial (1-d) dominated by wall-friction.
 In 4 (lightly dotted area): Darcy flow through the particulate layer.
 In 5: Darcy flow through the porous wall.
 In 6: same as 3.
 In 7: similar to 2.

CORNING In 8: flow deceleration; hydrodynamic separation forming eddy pairs and Discovering Beyond Imit local mixing.

Pressure drop contributions: Inlet / exit effects

Inlet plug

- Inlet flow: smooth streamlines; stable.
- Exit flow: separation; eddy pairs.
- Exit effect contribution to PD \cong twice inlet effect contribution^{*}

CORNING Discovering Beyond Imagination

SAE-2001-01-0909

Pressure drop contributions: • channel flow friction with the walls

Pressure drop contributions:

Flow through the particulate layer -- Darcy effect

Pressure drop contributions:

Flow through the filtration wall -- Darcy effect

Pressure drop contributions:

• Flow through the filtration wall -- Forchheimer effect

Total filter pressure drop = summation of all individual components

$$\Delta P = \frac{\mu Q}{2V_{trap}} (\alpha + w_s)^2 \left[\frac{w_s}{k_w \alpha} + \frac{1}{2k_{soot}} \ln \left(\frac{\alpha}{\alpha - 2w_{soot}} \right) + \frac{4FL^2}{3} \left(\frac{1}{(\alpha - 2w_{soot})^4} + \frac{1}{\alpha^4} \right) \right] + \frac{\rho Q^2 (\alpha + w_s)^4}{V_{trap}^2 \alpha^2} \left[\frac{\beta w_s}{4} + 2\zeta \left(\frac{L_{plug}}{\alpha} \right)^2 \right]$$

with $w_{soot} = \frac{\alpha - \sqrt{\alpha^2 - \frac{m_{soot}}{n_{open} L \rho_{soot}}}}{2}$

CORNING Discovering Beyond Imagination

Understanding "soot cake layer properties" are essential for accurate predictions of DPF pressure drop.

(SAE-2002-FL-83, in review.)

Experiments to verify the pressure drop model

Parameter	Min-Max. value	Unit
Filter size (diam.xlength)	4.66x6 – 12x15	in x in
Filter cell density	100 – 200	cpsi
Filter wall thickness	12- 17	mil
Filter geometry	Round, Oval	-
Engine flow rate	97.5 – 790	kg/hr
Engine flow temperature	240 – 370	° C
Particulate emission rate	1.45 – 20.8	gr/hr
Loading duration	1.3 – 118	hr

Range of parameters:

- Filtration characteristics of filters changing by 20 fold.
- Flow rate range changing by nearly an order of magnitude.
- Both light duty and heavy duty Diesel engines utilized.
- Particulate emission rate changing by more than an order-of-magnitude
- Duration of filter loading changing by two order-of-magnitudes.
- 41 filter loading tests on Diesel engine platforms.

Experiments (cont.)

Test bench setup for filter soot-loading (engine not shown).

Comparison (cont.)

(C) Large filters on heavy duty Diesel engines.

Filter size: 11.25 " x 12 " Cell density: 100 cells/in² Wall thickness: 17 mil. Engine: <u>heavy duty</u>.

Filter size: 12 " x 15 " Cell density: 100 cells/in² Wall thickness: 17 mil. Engine: <u>heavy duty</u>.

Comparison between all the test data collected and model prediction

Conclusions

- Reasonable model for DPF pressure drop (cake filter mode) available.
- Model can be customized to catalyzed filters.
- Model available for DPF deep-bed deposit mode*.
- What is not available / needed:
 - **Ash** -- effect of ash on filter pressure drop: ash "creation", "transport", "deposit", and "sintering" in filter channels and walls.
 - **Particulate deposit:** modes of uniform and nonuniform soot deposits, axially and radially.

* SAE - 2001 - 1016

<u>Acknowledgment</u>: Contributions of Dr. Konstandopoulos and his research team (CERTH/CPERI) to our understanding of the theory and practice of trap pressure drop is hereby acknowledged.

Appendix:

CORNING

2. Nomenclature

*m*_{soot}

Q

U_{ch}

 U_{w}

V_{trap}

W_{soot}

W

Primary soot particle size Diffusion Coeff. Factor equal to 28.454. Filter wall permeability Particulate layer permeability Effective filter channel length Exhaust gas mass flow rate Particulate mass in the deposited layer exhaust volumetric flow rate Flow speed in filter channel in the axial direction Flow speed in filter channel toward the filter wall (wall-flow speed) Trap volume Thickness of the particulate cake layer Thickness of the porous membrane (filter wall)

Filter cell opening (hydraulic diameter) Forchheimer coefficient for porous wall Pressure drop across the filter

X

β

 ΔP

ζ

μ

ρ

σ

 ρ_{soot}

Contraction/expansion inertial losses coefficient Exhaust gas dynamic viscosity Exhaust gas density Particulate packing density in cake deposit Filter cell density

CORNING Discovering Beyond Imagination

CORNING Discovering Beyond Imagination