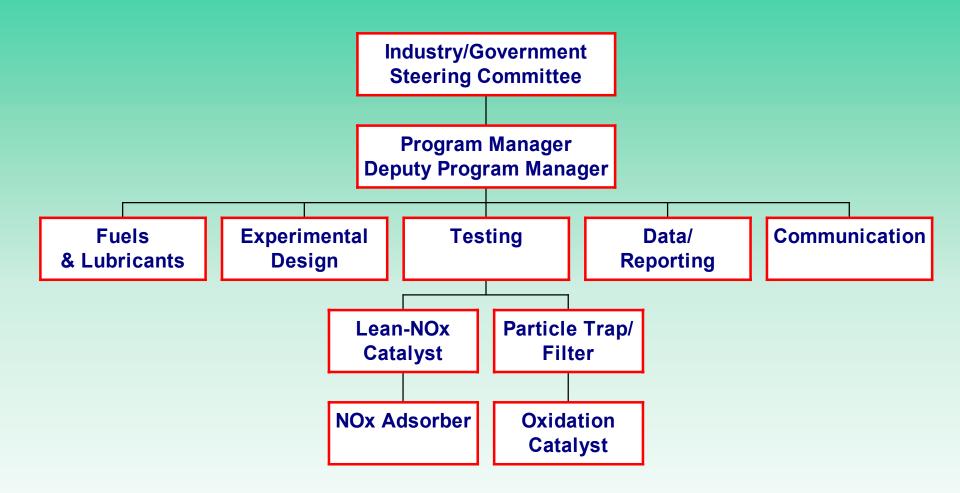
Overview of the Experimental Designs, Databases, and Key Findings from the Diesel Emissions Control – Sulfur Effects (DECSE) Program

> John E. Orban, Co-Chair, DECSE Data Committee Battelle - Columbus, Ohio Presented at the CLEERS Workshop Dearborn, MI October 17, 2001

# **Discussion Topics**

- DECSE Program Background
- DECSE Projects
  - (DPF, NO<sub>x</sub> Adsorber, DOC/Lean NO<sub>x</sub>)
  - Experimental Design
  - Database
  - Key Findings
- Advanced Petroleum-Based Fuels Diesel Emissions Control (APBF-DEC) Program Overview




# **DECSE** Background - Objective

Determine the impact of fuel sulfur levels on emission control systems that could be implemented to lower emissions of NO<sub>x</sub> and PM from onhighway trucks in the 2002-2004 time frame.



# **DECSE** Background - Organization





# **DECSE Background - Sponsors**

- Engine Manufacturers Association
- Manufactures of Emission Controls
  Association
- U. S. Department of Energy
  - Office of Heavy Vehicle Technologies
  - Office of Advanced Automotive Technologies
  - Laboratories: NREL and ORNL



# DECSE Background - Overview

- Emission Control Systems
  - Diesel oxidation catalysts
  - Lean-NO<sub>x</sub> catalysts
  - NO<sub>x</sub> adsorbers
  - Diesel particle filters
- Fuel Sulfur Levels: 3, 30, 150, 350 ppm
- ECS Aging: Up to 250 hours
- Engines: modern, production engines for source of exhaust



# DECSE Background - Project Status

- Diesel Particulate Filters
  - Test Program/Report Completed January 2000
  - Lab: Engineering Test Services Charleston, SC
- NO<sub>x</sub> Adsorbers
  - Phase I (Sulfur Effects) Completed October 1999
  - Phase II (Desulfurization) Completed October 2000
  - Lab: FEV Auburn Hills, MI
- Diesel Oxidation Catalysts/Lean-NO<sub>x</sub> Catalysts
  - Test Program/Report Completed June 2001
  - Lab: West Virginia University



# **DECSE** Emissions Data

|                     |                                                                 |                   |                 | Emissions            | Measured <sup>1</sup>           |
|---------------------|-----------------------------------------------------------------|-------------------|-----------------|----------------------|---------------------------------|
| Engine              | Test Method                                                     | Catalyst Age      | Fuel Sulfur     | Gases and Fuel       | Particulate Matter <sup>3</sup> |
|                     |                                                                 | (hrs)             | (ppm)           | Economy <sup>2</sup> |                                 |
| Cummins ISM370      | OICA modes 2, 3, 10, 11                                         | 0, 50, 150, 250   | 3, 30, 150, 350 | EO, DOC, LNOx        |                                 |
|                     | OICA 4-mode wtd.                                                | 0, 50, 150, 250   | 3, 30, 150, 350 | EO, DOC, LNOx        | EO, DOC, LNOx                   |
|                     | OICA mode 2 (w/ filter)                                         | 0                 | 3, 30, 150, 350 | EO, DOC, LNOx        | EO, DOC, LNOx                   |
|                     | FTP hot                                                         | 0, 50, 150, 250   | 3, 30, 150, 350 | EO, DOC              | EO, DOC                         |
|                     |                                                                 |                   |                 |                      |                                 |
| Navistar T444E      | Nav-9 modes 2, 3, 7, 9                                          | 0, 50, 150, 250   | 3, 30, 150, 350 | EO, DOC, LNOx        |                                 |
|                     | Nav-9 (4-mode) wtd.                                             | 0, 50, 150, 250   | 3, 30, 150, 350 | EO, DOC, LNOx        | EO, DOC, LNOx                   |
|                     | Nav-9 mode 9 (w/ filter)                                        | 0                 | 3, 30, 150, 350 | EO, DOC, LNOx        | EO, DOC, LNOx                   |
|                     | FTP 75                                                          | 0, 50, 150, 250   | 3, 30, 150, 350 | EO, DOC              | EO, DOC                         |
|                     |                                                                 |                   |                 |                      |                                 |
| Caterpillar 3126    | OICA modes 1-13                                                 | Note <sup>4</sup> | 3, 30, 150, 350 | EO, CDPF, CRDPF      |                                 |
|                     |                                                                 | Note <sup>4</sup> | 30              | EO, CDPF, CRDPF      |                                 |
|                     | OICA 13-mode wtd.                                               | Note <sup>4</sup> | 3, 30, 150, 350 | EO, CDPF, CRDPF      | EO, CDPF, CRDPF                 |
|                     |                                                                 | Note <sup>4</sup> | 30              | EO, CDPF, CRDPF      | EO, CDPF, CRDPF                 |
|                     | OICA mode 2 (w/ filter)                                         | Note <sup>4</sup> | 3, 30, 150, 350 | EO, CDPF, CRDPF      | EO, CDPF, CRDPF                 |
|                     | OICA mode 4 (w/ filter)                                         | Note <sup>4</sup> | 3, 30, 150, 350 | EO, CDPF, CRDPF      | EO, CDPF, CRDPF                 |
|                     |                                                                 |                   |                 |                      |                                 |
| 1.9L HSDI prototype | Performance mapping @<br>3000 rpm over range of<br>temperatures | Up to 250         | 3, 16, 30, 78   | EO, NAC              | EO, NAC                         |

<sup>1</sup> Entries identify source from which emissions data were obtained for each combination of catalyst/filter age and fuel sulfur level.

EO = Engine-out; DOC = Diesel Oxidation Catalyst; LNOx = Lean NOx Catalyst; CDPF = Catalyzed Diesel Particulate Filter; CRDPF = Continuously Regenerating Diesel Particulate Filter, NAC = NOx Adsorber Catalyst

<sup>2</sup>HC, NOx, CO, CO2, BSFC

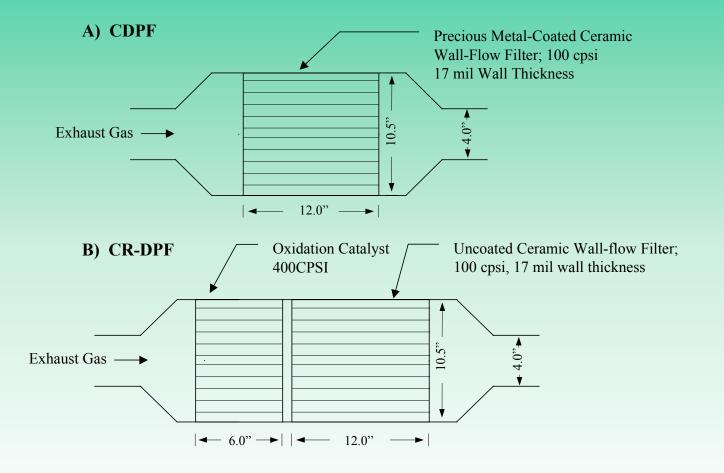
<sup>3</sup> Total PM, SOF, SO4, NO3

<sup>4</sup> The same CDPF and CRDPF filters were used throughout the test program. The 30-ppm sulfur fuel was tested after approximately 100 hours and 425 hours of use to evaluate aging effects.



# DECSE Background – Web Site

- http://www.ott.doe.gov/decse
  - Project Final Reports
  - Program Summaries
  - Fact Sheet
  - Questions and Answers about DECSE
  - Contacts




#### Diesel Particulate Filter Project

- Final Report Date: January 2000
- Lab: Engineering Test Services
- Test Engine: Caterpillar 3126



## **DPF** Systems





# DPF Study Questions

- How does <u>DPF</u> affect emissions of PM (including SO<sub>2</sub>, SOF, NO<sub>3</sub>) and selected gases?
- How does <u>fuel sulfur</u> affect emissions (both engine-out and post-filter)?
- Does DPF performance <u>degrade</u> over time?
- How does fuel sulfur affect the <u>Balance</u> <u>Point (regeneration) Temperature</u> (BPT)?
- Other related questions

## **DPF** Performance Tests

- Emissions Tests
  - Triplicate OICA 13-mode
    - Gases by mode
    - TPM, SOF, SO<sub>4</sub>
  - Duplicate Steady-State Tests
    - Gases, TPM, SOF, SO<sub>4</sub>
    - "Peak-Torque" OICA Mode 2
    - "Road-Load" OICA Mode 4
- Balance Point (Regeneration) Temperature Tests
  - Triplicate "5-mode" tests at each of 3 speeds and 5 temperatures
  - Confirmatory tests at constant temperatures



# DPF Experimental Design

| Test                  | Fuel Sulfur Level (ppm)                  |                                          |                                          |                                          |                                          |  |
|-----------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--|
|                       | 3                                        | 30                                       | 150                                      | 350                                      | 30                                       |  |
| Emissions<br>Tests    | EO (x2/x3)<br>CDPF,<br>CR-DPF<br>(x2/x3) |  |
| 5-mode<br>BPT Test    | 5 temp,<br>3 speeds<br>(x3)              | 5 temp,<br>3 speeds<br>(x3)              | 5 temp,<br>3 speeds<br>(x3)              | 5 temp,<br>3 speeds<br>(x3)              |                                          |  |
| Constant<br>Temp Test | T1,T2,<br>T3, T4                         | T1*, T2*                                 | T1*, T2*                                 | T1*, T2*                                 |                                          |  |

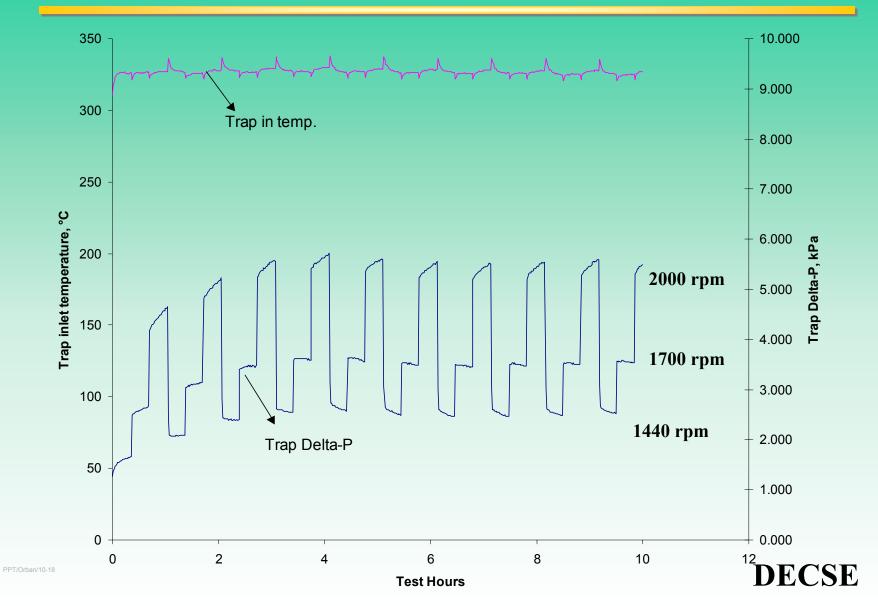


# Design of BPT Tests

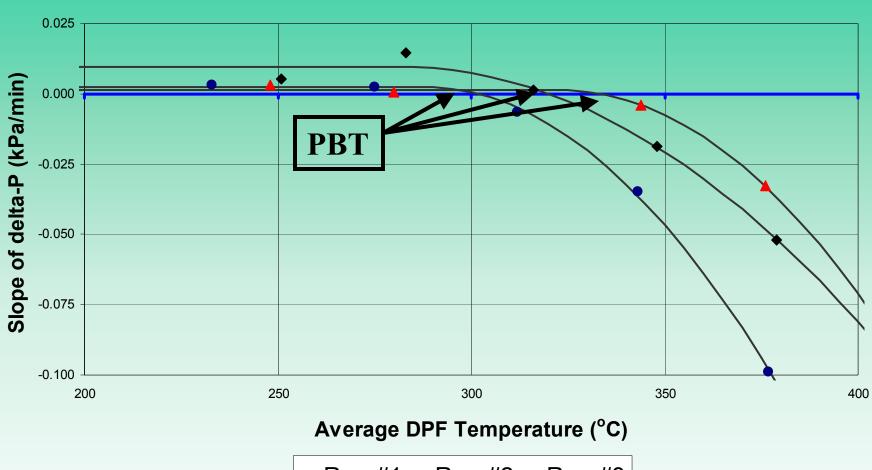
- Three Key Test Parameters
  - Engine Speed
  - Engine Exhaust Temperature
  - Engine Torque
- Balance Point Temperature (BPT) determined by measuring change in exhaust pressure (delta-P) across device at different temperatures
  - Decreasing delta-P indicates filter regeneration (PM combustion rate greater than build-up rate)



#### Three Test Methods Considered (Exhaust temperature and delta-P measured for each)


- 5-Mode BPT Test (primary method)
  - Hold speed fixed. Increase torque to achieve 5 specified temperatures. Hold for 15 minutes.
- Constant Temperature Test (confirmatory method)
  - Hold temperature fixed. Vary torque to achieve three engine speeds for 20 minutes each. Repeat ten times.
- Ramp Test (not used)
  - Hold speed fixed. Increase torque continuously causing temperature to increase.




#### 5-Mode BPT Test (constant speed - 5 torque/temperature settings)



#### Constant Temperature Test (change speed every 20 minutes)



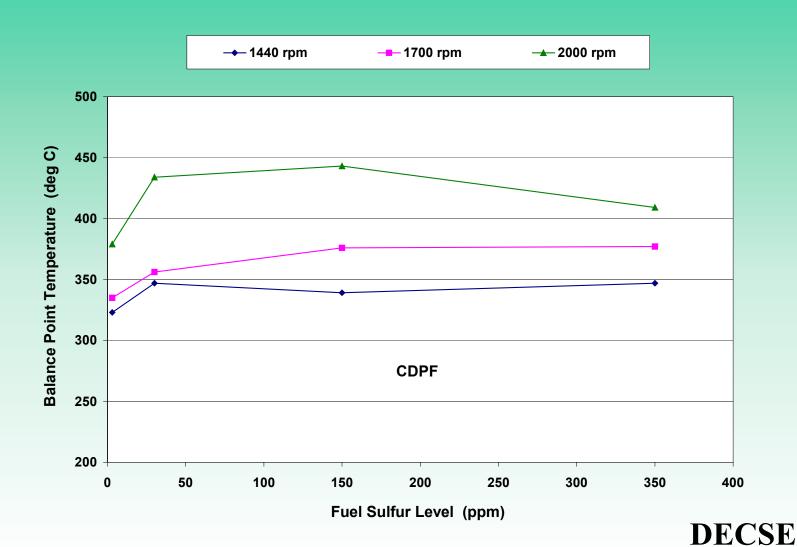
# Sample Results (5-mode tests)



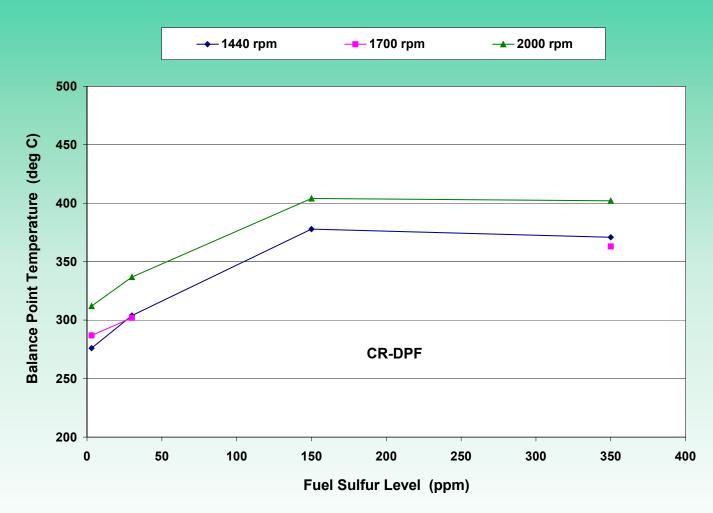
• Run #1 • Run #2 • Run #3



### BPT Estimates (with 95% confidence intervals)

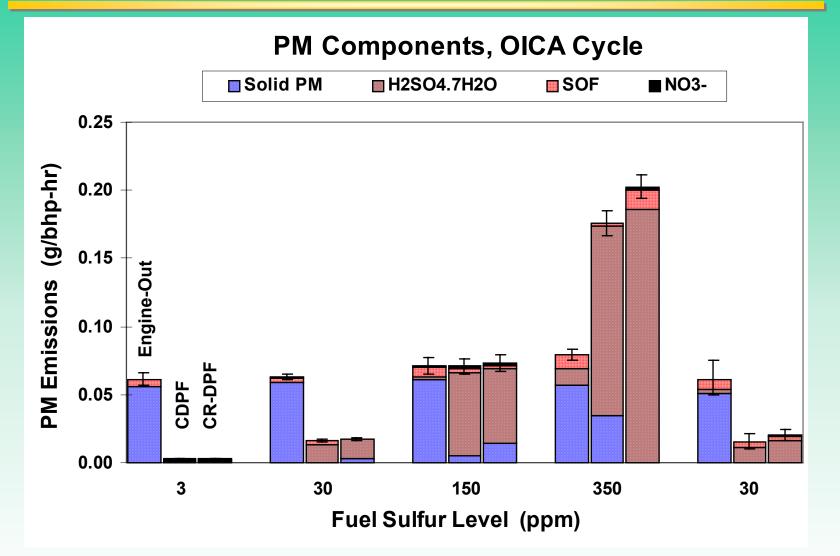

| Engine<br>Speed<br>(rpm) | Estimate                  | Fuel Sulfur Level (ppm) |                   |                   |                   |  |
|--------------------------|---------------------------|-------------------------|-------------------|-------------------|-------------------|--|
|                          |                           | 3                       | 30                | 150               | 350               |  |
| 1 4 4 0                  | <b>BPT</b> <sup>1</sup>   | 323<br>(<344)           | 349<br>(340, 357) | 334<br>(<362)     | 347<br>(<400)     |  |
| 1,440 -                  | ∆ <b>BPT</b> <sup>2</sup> |                         | 25<br>(2, 48)     | 11<br>(-24, 46)   | 24<br>(-33, 81)   |  |
| 1,700 <b>ВРТ</b><br>∆ВРТ | ВРТ                       | 337<br>(323, 348)       | 344<br>(<367)     | 376<br>(355, 395) | 377<br>(365, 387) |  |
|                          | ΔΒΡΤ                      |                         | 7<br>(-19, 33)    | 39<br>(15, 63)    | 39<br>(22, 56)    |  |
| 2,000                    | ВРТ                       | 380<br>(>350)           | 435<br>(427, 442) | 426<br>(407, 441) | 409<br>(399, 418) |  |
|                          | ∆BPT                      |                         | 56<br>(25, 87)    | 47<br>(13, 81)    | 30<br>(-1, 61)    |  |

<sup>1</sup> BPT estimated from pooled data


<sup>2</sup> Change in estimated BPT compared to 3-ppm test

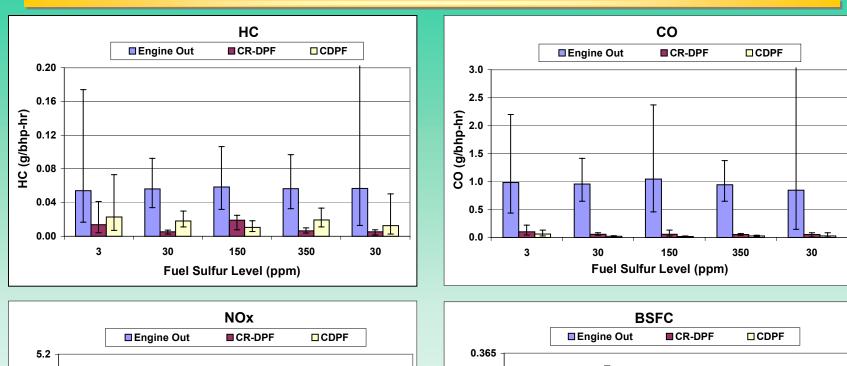


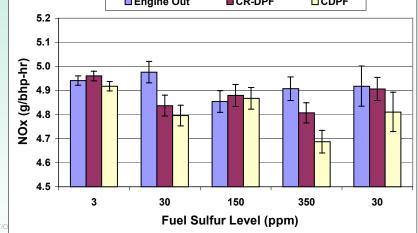
## Balance Point Temperature - DPF

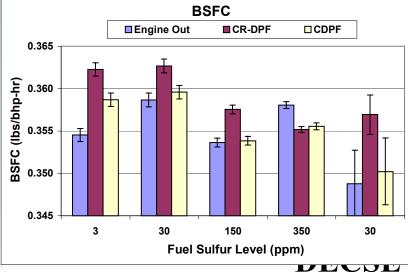



# Balance Point Temperature - CR-DPF







#### Effects of Fuel Sulfur on PM Emissions




DECSE

## **DPF** Gaseous Emissions







PPT/

# DPF Key Findings

- Both DPF Technologies Reduce PM Emissions by 95% When Used with Low (3-ppm) Sulfur Fuel
- DPF Regeneration Temperatures Increase by 25 deg C When Changing from 3-ppm to 30-ppm Sulfur Fuel
- Fuel Sulfur Produces a Significant Increase in Post DPF PM Emissions Due to SO<sub>4</sub> Formation (40% to 60% Conversion of Fuel Sulfur)
- DPF Technologies Reduce HC by 70% to 90% and CO by 90% to 99%, Depending on Test Mode and Technology



### NO<sub>x</sub> Adsorber Catalyst Project

- Final Report Date: October 2000
- Lab: FEV
- Test Engine: 1.9L HSDI Prototype

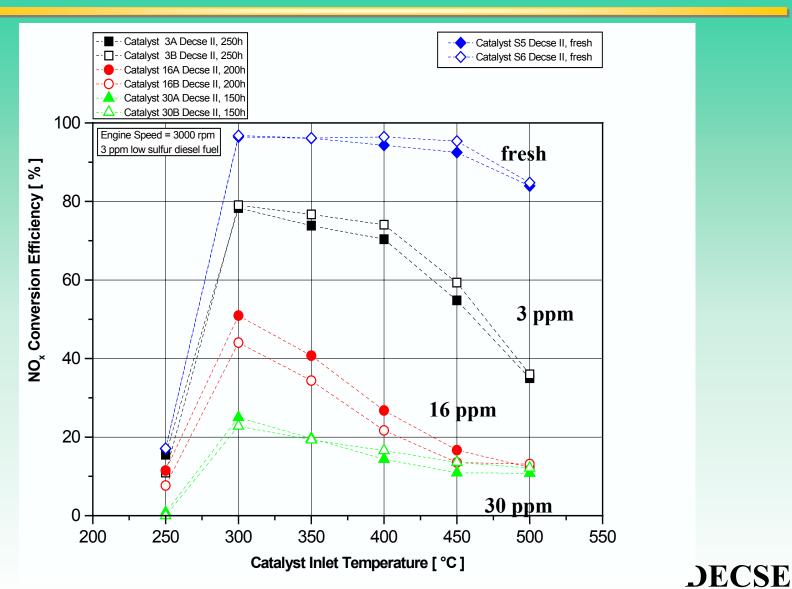


# NO<sub>x</sub> Adsorber Tasks

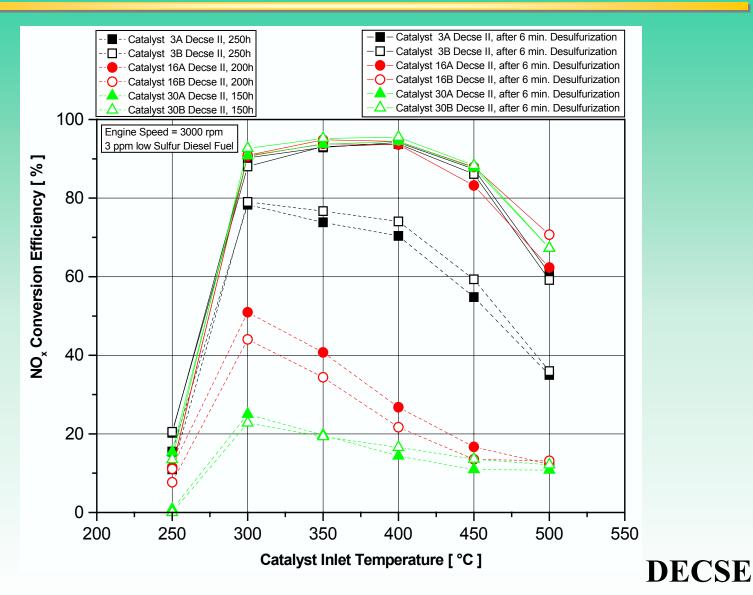
- Develop/Improve Calibration to Achieve Maximum NO<sub>x</sub> Conversion
- Map Performance
- Develop Desulfurization Process
- Demonstrate Desulfurization
- Evaluate Performance During Repeated Aging/Desulfurization Cycles



# Test Summary


| Test Purpose                                                                                           | Catalyst                                 | Sulfur I<br>(ppm) | Comments                                                                                                                              |
|--------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Task 1: Degreening, Initial Aging                                                                      | S3, S4<br>S5, S6, S7, S8                 | 3                 | S3 & S4 aged 75 hours, all others aged 10 hours                                                                                       |
| Task 2: Improve calibration to maximize NO <sub>x</sub> conversion                                     | S4                                       | 3                 |                                                                                                                                       |
| Task 3: Performance mapping                                                                            | S4, S5, S6<br>3a, 3b, 16a, 16b, 30a, 30b | 3                 |                                                                                                                                       |
| Task 4: Develop desulfurization process                                                                | S4 (process dev.)<br>S3 (process check)  | 3, 380            | 3-ppm used for desulfurization 380-ppm using for poisoning                                                                            |
| Task 5: Desulfurization demo/<br>Performance map                                                       | 3a, 3b, 16a, 16b, 30a, 30b               | 3, 150<br>3       | 3-ppm used for desulfurization<br>150-ppm using for poisoning;<br>Phase 1 cats desulfurized from<br>current state, no add'l poisoning |
| Task 6a: Periodic re-evaluation<br>(10 hour aging, map,<br>desulfurization, map: complete 5<br>cycles) | S5, S6<br>S7, S8                         | 3<br>75, 3        | S5, S6 all testing with 3-ppm;<br>S7, S8 aging with 75-ppm,<br>desulfurization with 3-ppm                                             |
| Task 6b: Characterize<br>performance trends (multiple<br>desulfurizations, map: complete 5<br>cycles)  | S7, S8                                   | 3                 | 12 desulfurizations were completed between each performance mapping                                                                   |

# Key Findings

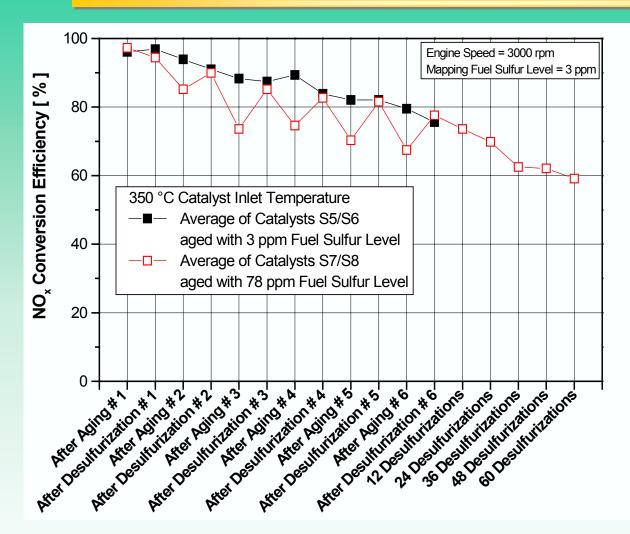

- Improved lean/rich engine calibration achieved NO<sub>x</sub> conversion efficiencies exceeding 90% over catalyst inlet operating temperatures from 300°C to 450°C.
- Desulfurization procedure showed recovery to greater than 85% NO<sub>x</sub> conversion efficiency in catalysts exposed to 3-, 16-, and 30-ppm sulfur fuel for up to 250 hours over 300°C to 450°C range after single desulfurization event.
- Desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions.



# **NO<sub>x</sub> Conversion Efficiency Results** (fresh and aged catalysts)



## **Recovery of NO<sub>x</sub> Conversion Following Desulfurization**




# Key Findings (continued)

- Aging with 78-ppm sulfur fuel reduced NO<sub>x</sub> conversion efficiency more than aging with 3-ppm sulfur fuel, but desulfurization events restored the conversion efficiency to nearly the same level of performance. Repeatedly exposing the catalyst to the desulfurization procedure caused a continued decline in the catalyst's desulfurized performance.
- Rate of sulfur contamination increased with repeated desulfurization cycles when using 78-ppm sulfur fuel. This was not observed with 3-ppm sulfur fuel.



# **Influence of Aging with Higher Sulfur** Levels



- Series of single desulfurization events with 10 hour aging between (3ppm or 78-ppm sulfur fuel for aging), performance mapped following each aging and each desulfurization
- Series of multiple desulfurization events followed by performance maps



# NO<sub>x</sub> Adsorber Data Available on CD

- Contact Helen Latham
  - lathamh@battelle.org
  - (614) 424-4062
- Includes
  - Final Report
  - Monthly Lab Reports
  - Gaseous Data Files (Tasks 2-6)
  - Data Documentation



Diesel Oxidation Catalyst/ Lean NO<sub>x</sub> Catalyst Project

Final Report Date: June 2001Lab: West Virginia University

- •Test Engines:
  - Cummins ISM370
  - Navistar T444E



# DOC/Lean NO<sub>x</sub> Study Questions

- How does the Catalyst affect emissions of NOx, HC, CO, and PM? (EO vs. Post Cat)
- How does the sulfur level in the fuel affect Post Cat emissions (relative to EO)? (at age zero)
- How does catalyst age (without sulfur) affect Cat performance?
- What is the effect of sulfur during aging on Cat performance? Total ppm hrs or other relationship?



# DOC/Lean NO<sub>x</sub> Study Questions (continued)

- Can the Cat recover from the effects of high sulfur levels? By how much? How quickly?
- How does Cat performance vary as a function of engine operating conditions (temperature)?
- How does this relationship change as a function of age and fuel sulfur level?



#### **Emissions Tests**

| Catalyst             | Engine         | Test Mode                                                                                      |
|----------------------|----------------|------------------------------------------------------------------------------------------------|
| DOC                  | Navistar T444E | Modes 2, 3, 7 and 9 from Nav-9<br>High exhaust temperature Nav-9 mode 9<br>FTP hot-cycle       |
|                      | Cummins ISM370 | Modes 11, 3, 10 and 2 from OICA-13<br>High exhaust temperature OICA-13 mode 2<br>FTP75 mimicry |
| Lean-NO <sub>x</sub> | Navistar T444E | Modes 2, 3, 7 and 9 from Nav-9<br>High exhaust temperature Nav-9 mode 9                        |
|                      | Cummins ISM370 | Modes 11, 3, 10 and 2 from OICA-13<br>High exhaust temperature OICA-13 mode 2                  |



#### Lean-NO<sub>x</sub> Inlet Temperatures

| Lean-<br>NO <sub>x</sub><br>Catalyst | Engine         | Test Mode       | Catalyst Inlet<br>Temperature<br>(°C) |
|--------------------------------------|----------------|-----------------|---------------------------------------|
| LT                                   | Navistar T444E | Nav-9 Mode 2    | 135                                   |
|                                      |                | Nav-9 Mode 3    | 207                                   |
|                                      |                | Nav-9 Mode 7    | 247                                   |
|                                      |                | Nav-9 Mode 9    | 405                                   |
| HT                                   | Cummins ISM370 | OICA-13 Mode 11 | 273                                   |
|                                      |                | OICA-13 Mode 3  | 380                                   |
|                                      |                | OICA-13 Mode 10 | 448                                   |
|                                      |                | OICA-13 Mode 2  | 528                                   |



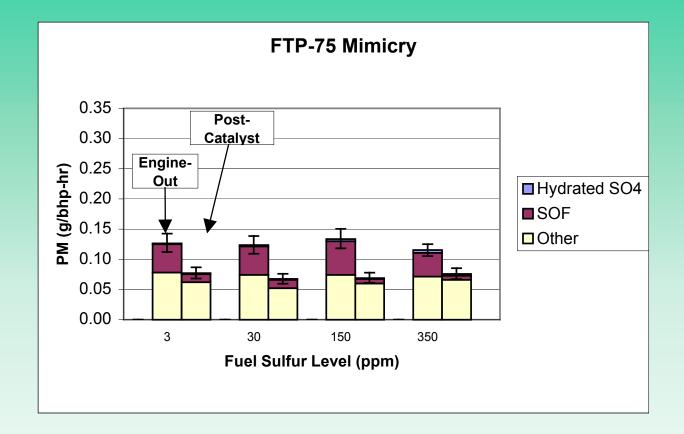
#### Experimental Design

| Aging<br>Hours | Fuel Sulfur Level (ppm)               |                           |            |                       |            |  |  |
|----------------|---------------------------------------|---------------------------|------------|-----------------------|------------|--|--|
|                | 3                                     | 30                        | 350        | 30                    | 150        |  |  |
| 0              | EO <sup>(1)</sup> , C1 <sup>(2)</sup> | EO, C2                    | EO, C4     | EO, C4 <sup>(3)</sup> | EO, C3     |  |  |
| 50             | C1                                    | C2                        | C4         | C4                    | C3         |  |  |
| 150            | C1                                    | C2                        | C4         | C4                    | C3         |  |  |
| 250            | EO, C1                                | EO, C2, C1 <sup>(4)</sup> | EO, C4, C1 | EO, C4, C1            | EO, C3, C1 |  |  |

(1) Engine-out emissions tests

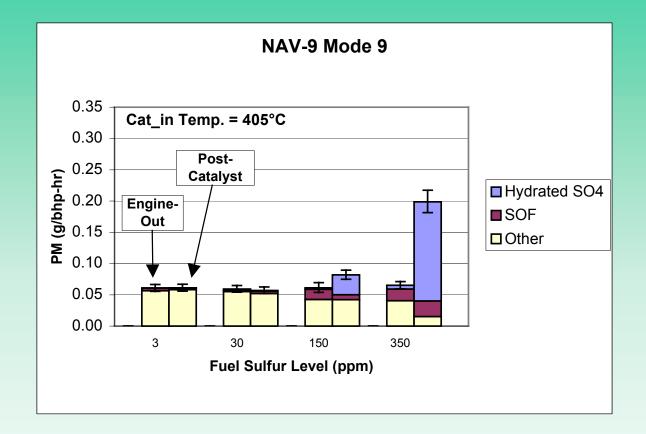
(2) Post-catalyst emissions tests performed with catalysts C1-C4 (Identical design for high- and low-temperature DOC and Lean NO<sub>x</sub> catalyst systems)

(3) 30-ppm recovery tests performed on catalyst C4 following 250 hours of aging with 350-ppm sulfur fuel.


(4) Catalyst C1 was re-tested with 30-, 150-, and 350-ppm sulfur fuel after (thermal) aging for 250 hours with 3-ppm sulfur fuel

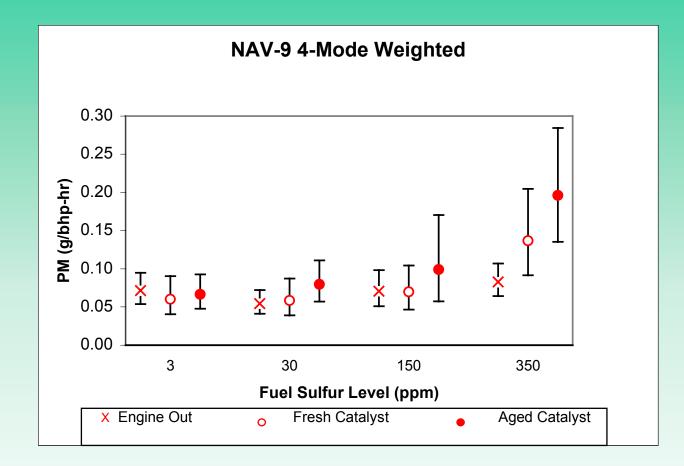
### DOC Key Findings

- 90% -100% HC Reduction Efficiency
- 88% 99% CO Reduction Efficiency
- Low Temp. DOCs (on T444E) Were Effective at PM Reduction Under Transient Tests
- Fuel Sulfur Results in Significant Increase in SO<sub>4</sub> Emissions Under Steady-State Conditions – Especially at Peak Torque
- Sulfur Effects on PM Increase with DOC Age




#### Effective SOF Reduction with Low Temperature Applications





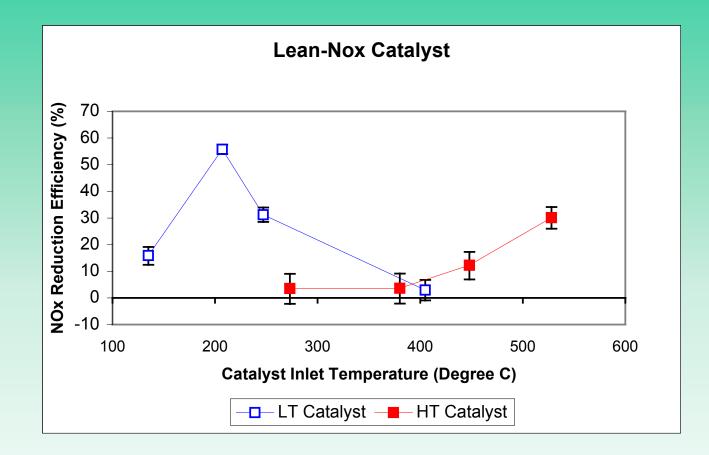

### Increased SO<sub>4</sub> Emissions with High Sulfur Fuel – at Peak Torque





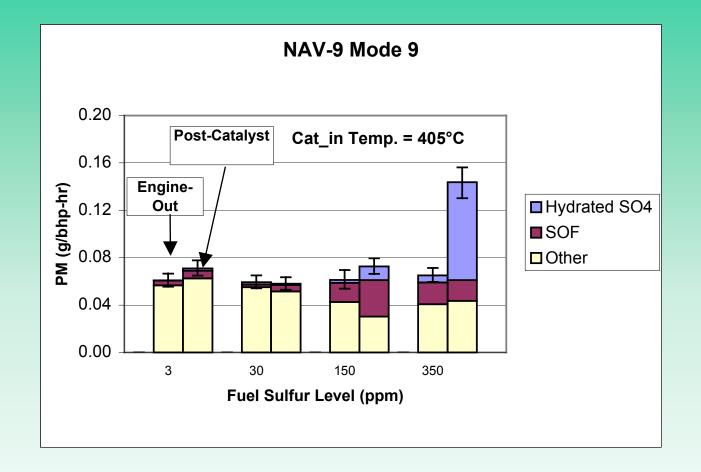
#### PM (SO<sub>4</sub>) Increases with Catalyst Age





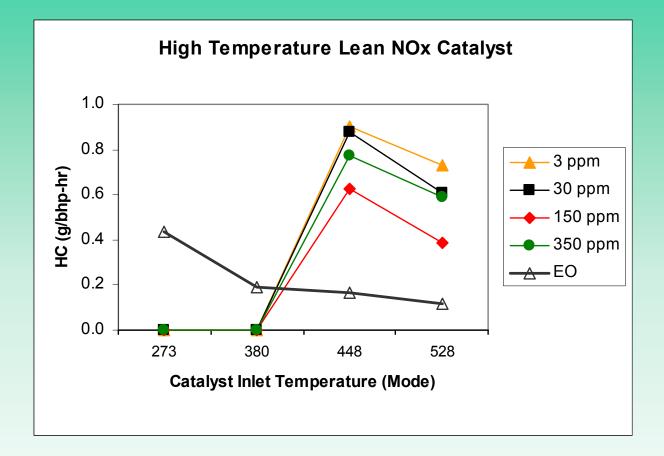

## Lean NO<sub>x</sub> Key Findings

- Achieved 10% to 50% NO<sub>x</sub> Reduction Over Specific Operating Conditions
- Fuel Sulfur Results in Significant Increase in SO<sub>4</sub> Emissions Under Steady-State Conditions – Especially at Peak Torque
- High Temperature LNCs (on ISM370) are vulnerable to HC slip
- Sulfur Effects on PM Increase with LNC Age



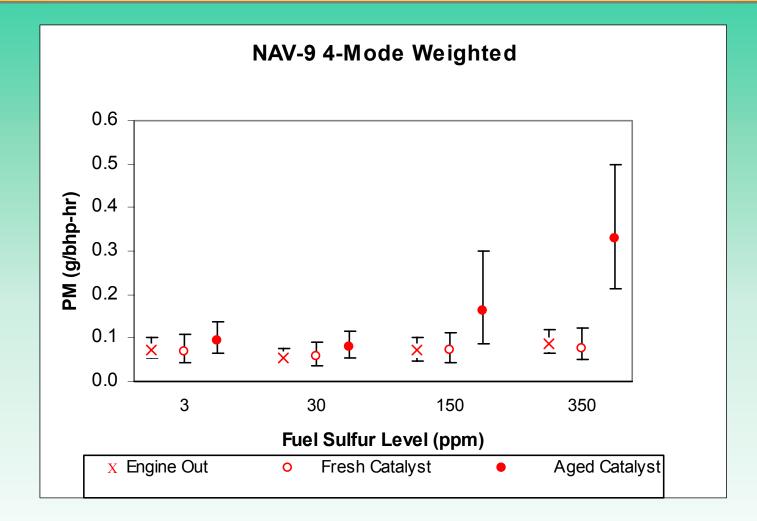

#### NO<sub>x</sub> Reduction vs. Engine Temp.






### Increased SO<sub>4</sub> Emissions with High Sulfur Fuel – at Peak Torque






#### HC Slippage with HT Catalyst





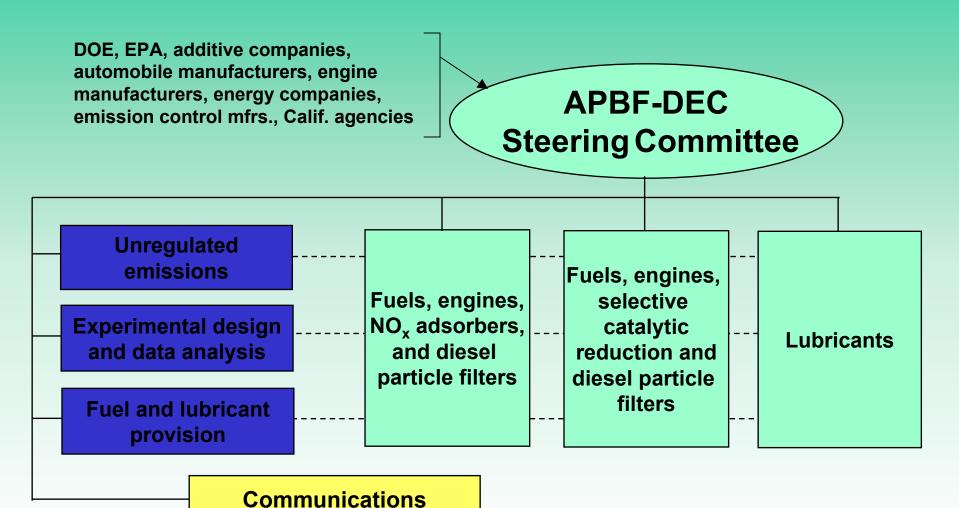
#### PM (SO<sub>4</sub>) Increases with Catalyst Age





Advance Petroleum-Based Fuels – Diesel Emissions Control (APBF-DEC) Program Overview

- Mission
- Organization/Summary
- Project Schedules




#### **APBF-DEC** Mission

- Identify optimal combinations of fuels, lubricants, diesel engines, and emission control systems to:
  - Meet projected emission standards during the period 2000 to 2010 while maintaining continuous improvement in engine efficiency and durability
  - Maintain customer satisfaction with vehicle performance
  - Provide the basis for economical transport of people and goods
  - Meet additional potential constraints (e.g., emissions of unregulated substances, including ultra-fine particulate matter and greenhouse gases)
- Explore the potential to achieve even lower emissions of criteria and unregulated pollutants beyond 2010

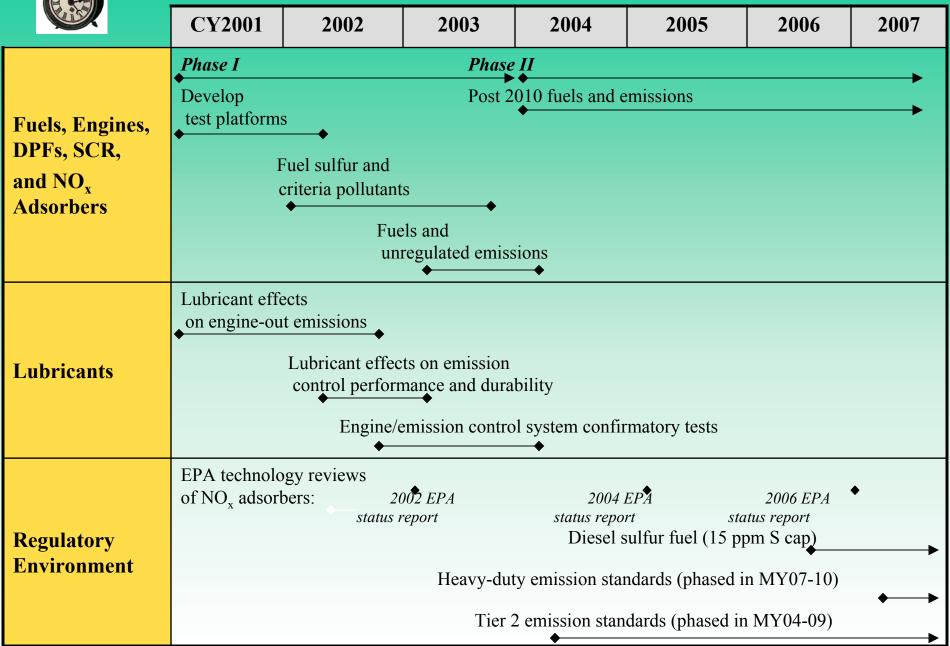


#### **APBF-DEC** Organization

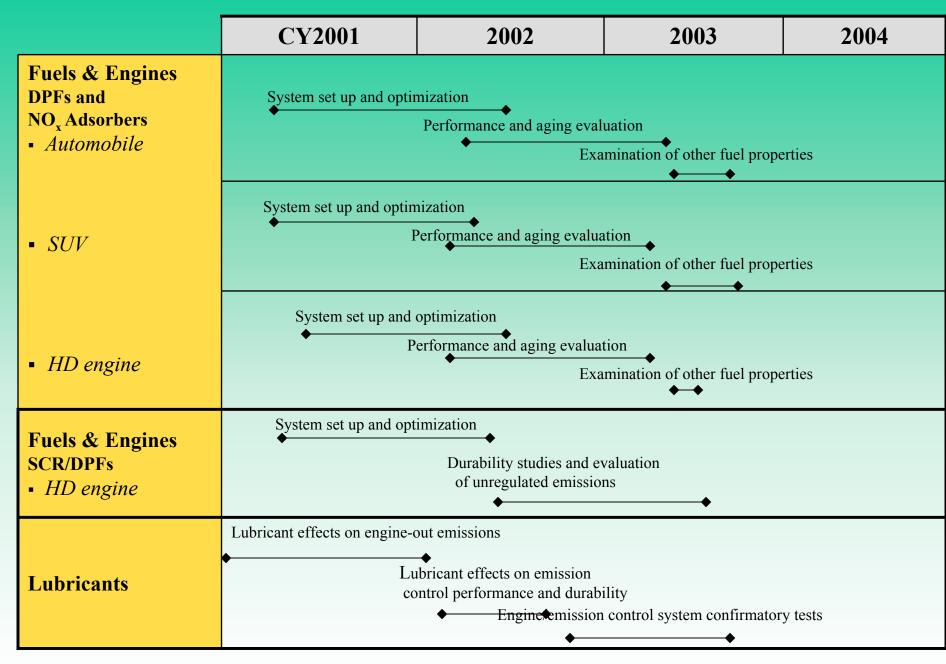




#### **DEC** Participants


- U.S. DOE
- U.S. Environmental Protection Agency
- American Petroleum Institute
- National Petrochemical and Refiners Association
- Engine Manufacturers Association
- Manufacturers of Emission Controls Association
- American Chemistry Council
- California Air Resources Board/South Coast Air Quality Management District






#### **APBF-DEC Program Schedule**





#### **APBF-DEC** Phase I Project Schedule



#### APBF-DEC Funding (\$millions)

- Direct Needs \$22MM
  - DOE 14.5
  - EMA 2.4
  - API 1.5
  - MECA 1.95
  - ACC 0.35
  - Calif. 0.8
- Total Provided 21.5

- In-Kind Needs \$14MM
  - **DOE 3.7**
  - EMA 4.7
  - API 1.7
  - MECA 3.1
  - ACC 0.8
- Total Provided 14

