

NOx Adsorber Catalysts: Sorption, Regeneration, and DeSulfation

Jim Parks, Aaron Watson, Greg Campbell, Bill Epling, Larry Campbell EmeraChem (Formerly Goal Line Environmental Technologies), Knoxville, TN

> 2nd DOE CLEERS Workshop: NOx Adsorbers Ford Scientific Research Laboratory, Dearborn, MI October 16-7, 2001

Technical Contact: Jim Parks EmeraChem 11141 Outlet Drive Knoxville, TN 37932 www.emerachem.com

SCONOx[™] Catalyst Chemistry

SCONOx[™] Operation is Cyclic

(1) Sorption Period: Oxidation/Capture Occurs

- 2 NO + O₂ + Pt + K₂CO₃ ----> KNO₂ + KNO₃ + Pt + CO₂
 - $2NO_2 + K_2CO_3 --> KNO_2 + KNO_3 + CO_2$
 - $2NO_2 + 1/2 O_2 + K_2CO_3 --> 2KNO_3 + CO_2$
 - $3NO_2 + K_2CO_3 --> 2KNO_3 + CO_2 + NO_3$

(2) Regeneration Period: Reduction/Reactivation

Reduction with Hydrogen [Efficient at Temperatures As Low As 150°C]:

KNO₂ + KNO₃ + Pt + 4 H₂+ CO₂----> 2 KOH + N₂ + CO₂ + Pt + 3 H₂O ----> K₂CO₃ + N₂ + 4 H₂O + Pt

Reduction with Hydrocarbons [Efficiency Dependent on Light-Off]:

• $KNO_2 + KNO_3 + Pt + HC ----> 2 KOH + N_2 + CO_2 + Pt + H_2O ----> K_2CO_3 + N_2 + 2 H_2O + Pt$

Chemistry in Catalyst Cell

Sorption (Oxidizing Atmosphere)

Regeneration (Reducing Atmosphere)

 $KNO_2 + KNO_3 + Pt + CH_4 ---- 2 KOH + N_2 + CO_2 + Pt + H_2O ---- > K_2CO_3 + N_2 + 2 H_2O + Pt$

Substrate

Bench Reactor Data: Sorption/Regeneration Cycle

Simulated Exhaust Flowed Over Catalyst in Bench Scale Reactor
Sorption Plot Shows Catalyst Site Saturation Beginning at 19 minutes
Small "Puff" of NOx is Emitted in Regeneration
NOx Conversion is a Function of Sorption Cycle Period

NOx Sorption: Varying Space Velocity

Constant Inlet NOx Concentration; Varying Inlet NOx Mass Flow
Conversion Efficiency High for SV of 60k/hr When Capacity Sufficient

Varying Space Velocity with Constant Mass Flow

Constant Inlet NOx Mass Flow; Varying Inlet NOx Concentration
Sorption Profiles More Similar, But Variation Occurs

Varying Space Velocity & Constant Flow Rate of NOx

Data Normalized to Inlet NOx Mass Flow

•Same Data with Varying Space Velocity

•Variation in NOx Sorption Profile Still Evident

•Does NO->NO2 Conversion and Pore Diffusion, etc. Cause Variation?

Regeneration in Diesel Applications

Net-Reducing Atmosphere Required for Regeneraton

•Diesel Fuel Reductant Delivered with Air-Assisted Injector

•Valve on Exhaust Decreases Exhaust Flow Through Catalyst During Regen

Lower Space Velocity Aids Flow Distribution and Reforming

•Lower Flow Requires Less Fuel to Combust Lower O2 Mass Flow

Low Temp Performance: Reductant Efficiency

NOx Sorption Efficiency a Function of Regeneration Efficiency
Diesel More Effective when Combusted/Reformed to Lighter Reductants

Control of Sulfur

•Sulfur Masks Catalyst and Degrades NOx Performance •Sulfates are Thermodynamically Preferred Over Nitrates or Carbonates on Catalyst

•Control of Sulfur is Critical to Success of NOx Adsorber:

Fuel/Lub Sulfur Reduction

 •Sulfur "Traps" Can Protect Downstream NOx Adsorber
 •(1) Regenerable Traps Can Be Cleaned from Sulfur On-Line
 •SCOSOx[™] Releases Sulfur as SO₂

•(2) High Capacity Sulfur Traps Can Be Serviced

•**DeSulfation** of NOx Adsorbers Removes Sulfur from Catalyst and Recovers NOx Performance

Regenerable S Trap Temperature Performance

- Bench Flow Reactor Data Shown
- SO2 Sorbed Efficiently Over Wide Temperature Range
- SO2 Release is Best at Temperatures > 250 C

Catalyst Geometry for Regenerable S Trap

Dual-Chamber Design Enables Efficient Regeneration Control
Reverse Flow During Regeneration Prevents S Contact w/ NOx Adsorber
Released SO2 Dumped in Exhaust Downstream

Regenerable Sulfur Trap (Engine Test)

- Regenerable Sulfur Trap Used Upstream of NOx Adsorber Catalyst
- Released SO2 Dumped Downstream of NOx Adsorber

Sulfur Fills Sites and Decreases NOx Capacity

Data Obtained at 310°C Exhaust Temperature Exposure to Sulfur Decreases Catalyst NOx Performance

NOx Capacity Recovered During DeSulfation

•Degree of NOx Capacity Recovery Dependent on Temperature •Profile of NOx Sorption Differs After deSulfation

Analysis of NOx Capacity Recovery

•NOx Sorption Profile Difference Before Sulfur and After DeSulfation Results in Different NOx Capacity Recovery

•NOx Capacity for Full 2.5 min. of Sorption Cycle was not Completely Recovered

•NOx Capacity During 1.0 min. Sorption Cycle was Completely Recovered

	Analysis of Full 2.5 min. Cycle		Analysis From 0.2 to 1.2 min.	
Run	NOx Conversion	NOx Capacity (vol:vol)	NOx Conversion	NOx Capacity (vol:vol)
Before S Exposure	65.15%	0.456	92.62%	0.259
After S Exposure	45.53%	0.319	69.34%	0.194
After Regen at 449 C	42.90%	0.278	66.04%	0.171
After Regen at 505 C	50.51%	0.364	84.85%	0.245
After Regen at 535 C	56.61%	0.412	92.13%	0.268

deSulfation: S Release Recovers NOx Capacity

•Data from deSulfation Experiment on TGA and Engine Test Platform with NOx Adsorber Catalyst Shows that deSulfation (TGA Data) Corresponds with NOx Capacity Recovery (Engine Data)

•deSulfation Occurs in Temperature Range of 400 to 550°C

Non-Steady-State Processes of NOx Adsorber

Sorption

- >99% NOx Removal Prior to NOx Saturation
- NOx Storage Sites Continually Being Filled During Sorption
 Process

Regeneration

- Diesel Fuel Demonstrated as Reductant Source
- Combustion, Reforming, Site-Reduction, and NOx Reduction All Occur on Catalyst During Regeneration
- Fast Kinetics of Regen Process Facilitate Rapid Regen
 Process in Diesel Application

DeSulfation

- Sulfur Masks Catalyst Ability to Remove NOx
- DeSulfation Renews Catalyst's Ability to Remove NOx
- DeSulfation Process is Current Main Area of Focus
 - •Thermal Dependence
 - Kinetics
 - Repeatability

