Raman Probe of Particle Size Effects in Aftertreatment Catalysts

Howard Fang and Roger England, Cummins Inc. Thomas Watkins and Michael Lance, ORNL/HTML Michele Sanders, EmeraChem

> CLEERS Workshop October 16-18, 2001

Raman Probe of Microcrystalline of Silicon

Raman has been used to determine whether a Si-film is crystalline or amorphous crystalline Si: sharp band at 522 cm⁻¹ ($\Delta \omega_{1/2} = 3.5 \text{ cm}^{-1}$) amorphous Si: hump ~480 cm⁻¹ (very broad due to a loss of long range ordering) laser annealed Si: 515 cm⁻¹ ($\Delta \omega_{1/2} = 8 \text{ cm}^{-1}$) *Morhange et. al. Solid State Comm. 31, 805 (1979)* plasma deposited Si: 476~512 cm⁻¹ ($\Delta \omega_{1/2}$ increases with decreasing energy)

Tsu et. al. Solid State Comm. 36, 817 (1980)

Raman Probe of Carbonaceous Materials

Pure graphite: a sharp *graphitic* band at 1578 cm⁻¹ ($\Delta \omega_{1/2} = 16$ cm⁻¹) Ground graphite: a second *amorphous* band at 1335 cm⁻¹ ($\Delta \omega_{1/2} \sim 40$ cm⁻¹) Other carbonaceous materials:

Raman Probe of Particle Size of CeO₂

Major CeO_2 460 cm⁻¹ band is sensitive to particle size (W.Weber, et. al. Phys. Review B48,178 (1993))

Sulfation generates additional bands at 1168 and 1610 cm⁻¹ while the 1610 cm⁻¹ band occurs at high temeprature

Raman Probe of Anatase/Rutile Phase Transition in TiO₂

Raman is a sensitive probe of Pt dispersion

The 146.2 cm⁻¹ Raman transition of TiO₂ shifts to 153.4 cm⁻¹ while the bandwidth increases from 9 cm⁻¹ to 18.3 cm⁻¹ (almost 100% change)

wt % of [Pt] on TiO₂

= (mass of the Pt layer)/(mass of the TiO_2 particle)

Thickness d=1.2 ~1.5 A

$$= (4\pi r^2 d \bullet \rho_{Pt}) / (4/3 \pi r^3 \bullet \rho_{TiO2})$$
$$= 3d \bullet \rho_{Pt} / r \bullet \rho_{TiO2}$$

= 3 x1.5 x19.7 /1250 x 3.8

= 1.6 %

Particle Size Correlation between Raman and XRD Spectra

Raman bandwidth of TiO₂ band

Particle Size Measurement by XRD

The mean crystal size can be calculated from Scherrer formula $t = 0.9\lambda/Bcos\theta_b$

where λ is the wavelength of incident radiation, θ_{b} is the Bragg angle and B is the peak breadth measured in radians

TEM Image of Typical Dispersion of Pt on Titania

CONCLUSIO<u>NS</u>

• Raman is a sensitive probe of Pt dispersion

-Raman response needs to be calibrated against a reference method such as XRD or TEM

- The 146 cm⁻¹ Raman band of TiO₂ shifts and broadens with [Pt] loading
- The bandwidth increases significantly at a critical concentration responsible for a monolayer coating on catalyst and finally collapses due to coalescence of particles into large agglomerates