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DRIFTS (diffuse reflectance FTIR) and MicroRaman Spectroscopy in
Catalysts of Aftertreatment

• Study of surface species is critical in developing a fundamental
understanding of storage and aging mechanism in NOx/SOx
absorbers

      -In-situ probe

• Able to derive thermodynamic and kinetics parameters from
absorption vs. temperature and time

     -Required for model development and catalyst design

• Delineate S-poisoning mechanism in NOx absorbers by monitoring
adsorbed species

     -Raman bandwidth of certain active components can be correlated to particle

      size and sintering effects
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DRIFTS monitors the product buildups on 2-dimensional
overlayer

SO2 or NO2

IR

Cat

dP/dt = k[SO2 or NO2][Cat]site

          = k’[Cat]site

P = At + B(1 - e-ααt)

Empirical parameters A, B and

αα
can be derived from curve
fitting
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Nitration Kinetics of BaO by Raman
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Surface adsorbed species show higher activation energies (larger slope) than the bulk nitrates



Raman Probe of Sulfation on BaO
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• Bulk-sulfate formation (989 cm-1) occurs
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RAMAN ANALYSIS OF SULFATION ON MgO
• MgO powder (25 m2/g) shows no Raman response in 600-1400 cm-1 region except
  a weak feature at 1074 cm-1

• After an exposure to SO2/air for 2 hrs under a flow reactor, MgO shows two Raman
  features at 997 cm-1 (bulk sulfate) and 1101 cm-1 (surface-sulfate/bisulfate)

• As temperature increases from 25 to 330°C, surface-sulfate species are gradually
  converted into bulk-sulfates
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RAMAN ANALYSIS OF SULFATION ON COMMERCIAL SOX TRAP

Catalyst powder was exposed to SO2/air under various temperatures with a flow reactor
for 2 hrs

• All data are normalized against the CeO2 band at 460 cm-1

• Sulfites or surface sulfates are converted into bulk sulfates at higher temperature; consistent
  with DRIFTS data

• The more sulfation, the higher the fluorescence background
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Nitration Kinetics by DRIFTS
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Sulfation of model metal oxides
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-0.05

0.05

0.15

0.25

0.35

7009001100130015001700
cm-1

A
bs

or
ba

nc
e

Al2O3  exposed to SO2/air @250C

-0.05

0.05

0.15

0.25

0.35

0.45

7009001100130015001700
cm-1

A
bs

or
ba

nc
eSulfites

Sulfates/Bisulfates

Vapor-like SO2

Surface adsorbed SO2

Sulfates

1139 cm-1 band

0

20

40

60

0 10 20 30 40 50
Time (minutes)

In
te

gr
at

ed
 S

tr
en

gt
h

under N2

under air

1355 cm-1 band

0

30

60

90

0 20 40 60 80
Time (minutes)

In
te

gr
at

ed
 S

tr
en

gt
h

no Pt

1% Pt



CONCLUSIONS

• Both DRIFTS and Raman are sensitive tools for identifying surface species

      responsible for NOx/SOx absorption

     -With appropriate calibration to internal reference, quantitative measurement using Raman

      can be obtained

     -Raman analysis can be easily interfered by soot

     -Raman is more characteristic to probe S-species due to their sharper bands than IR

• Distribution of various nitration species is surface basicity dependent

     -Trapping capacity follows  BaO > CaO > Al2O3 > TiO2

     -Major nitration species are surface adsorbed NO2, nitrites and nitrates and their relative

      abundance is a function of temperature and catalyst

• Major sulfation species are surface adsorbed SO2, sulfites, sulfates and bi-

sulfates

     -Ratios of sulfite/sulfate and SO2/sulfate are catalyst dependent and may play major roles

       in determining trapping capacity

     -Surface sulfated species can be converted into pyro- or poly-sulfates which are precursors

      responsible for S-poisoning in NOx absorbers


