VIBRATIONAL SPECTROSCOPY, DRIFTS AND RAMAN, ON CATALYSTS IN AFTERTREATMENT

Howard Fang (Cummins) and Barton Smith (ORNL)

CLEERS Workshop Oct. 16-18, 2001

DRIFTS (diffuse reflectance FTIR) and MicroRaman Spectroscopy in Catalysts of Aftertreatment

- Study of surface species is critical in developing a fundamental understanding of storage and aging mechanism in NOx/SOx absorbers
 - -In-situ probe
- Able to derive thermodynamic and kinetics parameters from absorption vs. temperature and time

-Required for model development and catalyst design

 Delineate S-poisoning mechanism in NOx absorbers by monitoring adsorbed species

-Raman bandwidth of certain active components can be correlated to particle size and sintering effects

DRIFTS monitors the product buildups on 2-dimensional overlayer

dP/dt = k[SO₂ or NO₂][Cat]_{site} = k'[Cat]_{site}

 $P = At + B(1 - e^{-\alpha t})$

Empirical parameters A, B and

 α can be derived from curve fitting

Surface adsorbed species show higher activation energies (larger slope) than the bulk nitrates

Temp (C)

- at high temperatures
- Pyro-sulfates are observed

RAMAN ANALYSIS OF SULFATION ON MgO

- MgO powder (25 m²/g) shows no Raman response in 600-1400 cm⁻¹ region except a weak feature at 1074 cm⁻¹
- After an exposure to SO₂/air for 2 hrs under a flow reactor, MgO shows two Raman features at 997 cm⁻¹ (bulk sulfate) and 1101 cm⁻¹ (surface-sulfate/bisulfate)
- As temperature increases from 25 to 330°C, surface-sulfate species are gradually converted into bulk-sulfates

RAMAN ANALYSIS OF SULFATION ON COMMERCIAL SOX TRAP

Catalyst powder was exposed to SO_2 /air under various temperatures with a flow reactor

- All data are normalized against the CeO₂ band at 460 cm⁻¹
- Sulfites or surface sulfates are converted into bulk sulfates at higher temperature; consistent with DRIFTS data
- The more sulfation, the higher the fluorescence background

Raman Analysis in Aging of Commercial NOx Absorbers

Nitration Kinetics by DRIFTS

BaO purged with NO₂ (0.1 % in N₂) under anaerobic condition at 250°C

CONCLUSIONS

Both DRIFTS and Raman are sensitive tools for identifying surface species responsible for NOx/SOx absorption

-With appropriate calibration to internal reference, quantitative measurement using Raman can be obtained

-Raman analysis can be easily interfered by soot

-Raman is more characteristic to probe S-species due to their sharper bands than IR

• Distribution of various nitration species is surface basicity dependent

-Trapping capacity follows $BaO > CaO > Al_2O_3 > TiO_2$

-Major nitration species are surface adsorbed NO₂, nitrites and nitrates and their relative abundance is a function of temperature and catalyst

Major sulfation species are surface adsorbed SO₂, sulfites, sulfates and bisulfates

- -Ratios of sulfite/sulfate and SO₂/sulfate are catalyst dependent and may play major roles in determining trapping capacity
- -Surface sulfated species can be converted into pyro- or poly-sulfates which are precursors responsible for S-poisoning in NOx absorbers