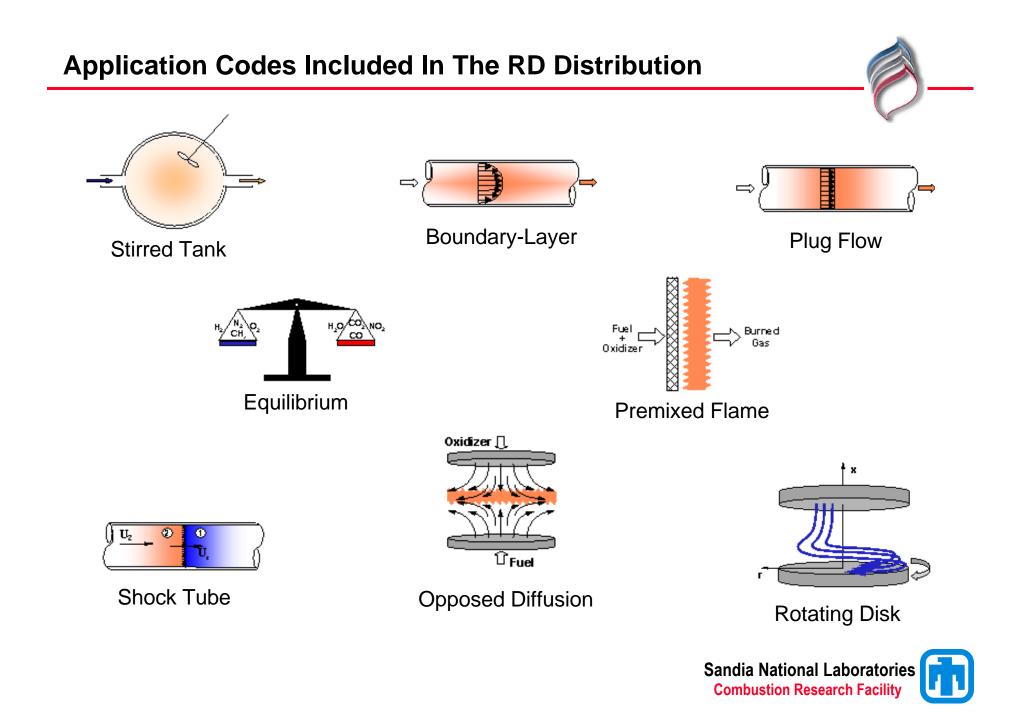

Migrating CHEMKIN Applications to the MATLAB/SIMULINK Environment for Simulating NO_x Conversion in a TWCC

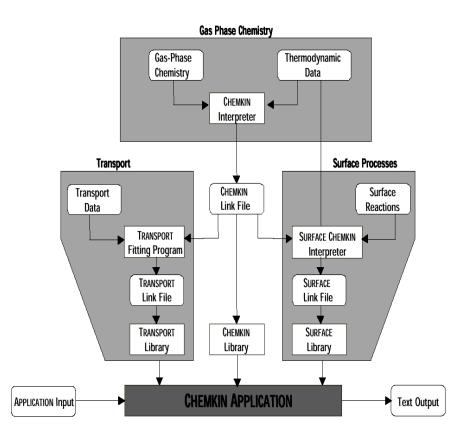
Anthony McDaniel and Andy Lutz Combustion Research Facility Sandia National Laboratories, Livermore, CA

- Brief review of CHEMKIN and CHEMKIN applications
- Migrating to MATLAB/SIMULINK
- Model Problem chosen from literature
- SIMULINK demonstration
- Conclude


- A collection of subroutines designed to facilitate the solution of problems involving chemically reacting flow systems
 - Developed by Sandia National Laboratories
 - General-purpose, problem-independent algorithms to manage computation and provide information

Species (composition, concentration, charge, site occupancy, etc.) Reactions (kinetic parameters, stoichiometric coefficients, etc.) Chemical production rates, thermodynamic properties, other utilities

- Gas-phase reaction mechanisms (CHEMKIN)
- Surface reaction mechanisms (SURFACE CHEMKIN)
- Includes a suite of application 0-, 1-, and 2-D applications codes
- Currently distributed commercially by

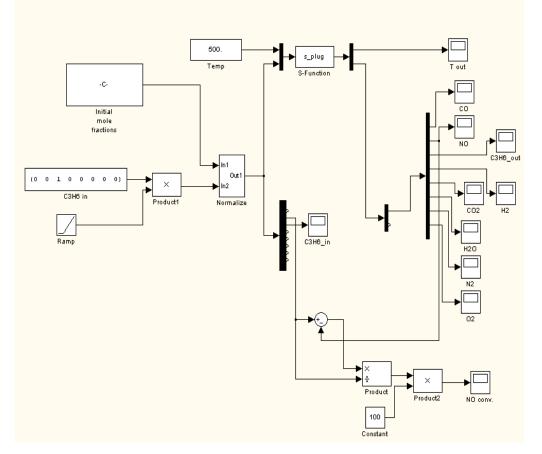


Program Structure

- Gas-phase chemistry, surface chemistry, and transport libraries compiled with application code
- Input files specify gas, surface, and transport processes
 - Databases and reaction mechanisms
 - Interpreters generate linking files that communicate with application code
- Subroutine calls to CHEMKIN libraries simplify program structure

Plug Flow Model Of TWCC

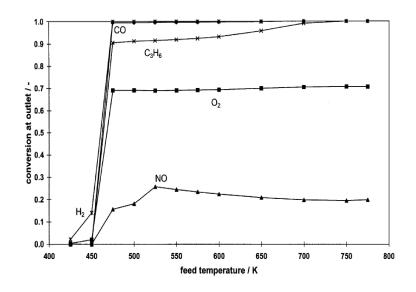
Number of square cells	62,000	m ⁻²
Reactor length	0.09	m
Length/diameter ratio	1	_
Wall thickness	180	μm
Washcoat thickness	39	μm
Converter void fraction	0.69	_
Space velocity	14	s^{-1}
Nusselt number	2.98	—
Sherwood number	2.98	_
Catalytic surface area	1.4×10^4	$m^2_{Noble Metal} m^{-3}_{reactor}$
Total surface sites concentration	2.7×10^{-5}	mol $m_{Noble Metal}^{-2}$



Inlet Gas	%Vol.	
СО	1.40	
0 ₂	1.69	
NO	0.11	
C ₃ H ₆		
H ₂	0.47	
H ₂ O	10.00	
CO ₂	14.00	
N ₂	72.27	

- Non-dispersive, one-dimensional, reacting flow in conduit of arbitrary geometry
 - Differential/algebraic equations solved implicitly using DASSL
 - Optional external energy transfer using overall heat transfer coefficient
- Example problem taken from J.H.B.J. Hoebink et al., Chemical Engineering Sciences, 55 (2000) pg 1573-1581

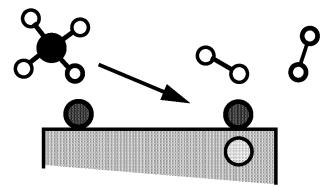
SIMULINK Model


- Routine gradually increases
 C₃H₆ concentration
 - NO_x conversion
 - O₂ conversion
 - Exit temperature
- CHEMKIN PLUG interfaced through s-function
 - Brute force
 - Limited flexibility
- More elegant approaches possible
 - Use SIMULINK solvers
 - Recast CHEMKIN routines as SIMULINK library modules

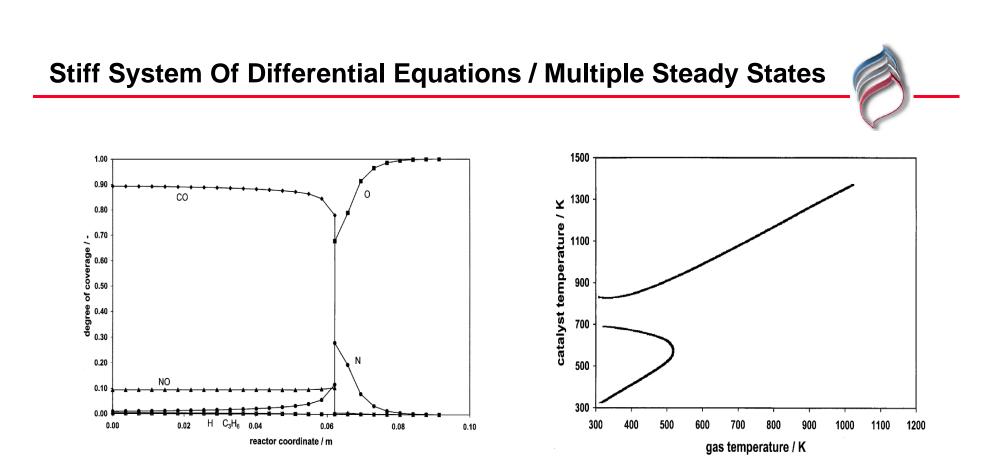


Model Chemistry From Hoebink et al.

- Mechanism and rate parameters taken from various literature sources
 - Combination of elementary and global reactions
- Predict light-off behavior in laboratory systems

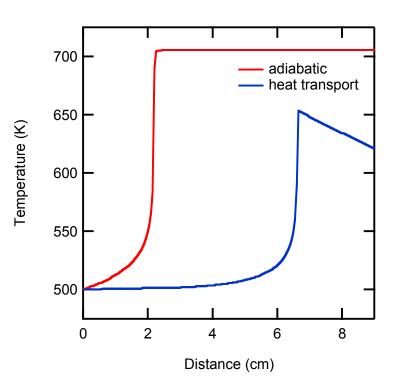

```
k_{a,CO}
CO + * \rightleftharpoons CO*
              k<sub>d,CO</sub>
               k_{a,02}
O_2 + 2* \rightleftharpoons 2O*
               kd.02
              k_{a,CO}
NO + * \rightleftharpoons NO*
              ka,co
                    ka.C3H6
C_3H_6 + 3* \rightleftharpoons C_3H_6***
              k<sub>d,C3H6</sub>
k<sub>a,H2</sub>
H_2 + 2* \rightleftharpoons 2H*
               k<sub>d,H2</sub>
                 k<sub>dias</sub>
NO* + * \rightarrow N* + O*
                    k_{\rm CO_2}
CO* + O* \rightarrow CO_2 + 2*
                    k_{N_2,1}
NO* + N* \rightarrow N_2 + O* + *
       k_{N^{2,1}}
2N* \rightarrow N_2 + 2*
                             k_{{
m H}^{20,1}}
C_{3}H_{6} * * * + 6O * \rightarrow 3CO * + 3H_{2}O + 6 *
                  kH20,2
2H* + O* \rightarrow H_2O + 3*
```

Sandia National Laboratories

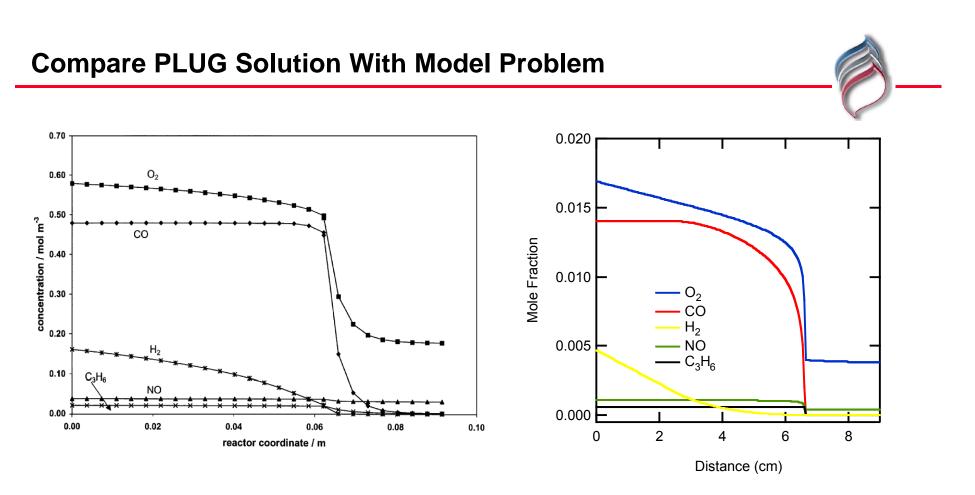

Simple Conversion Of Model Chemistry To CHEMKIN Format

- Symbolic representation of elements, species, and reactions (alphanumeric characters)
- No surface thermochemistry required
 - Forward and reverse rates specified
- Pre-exponential factors converted to (cm² mol⁻¹ s⁻¹) using site density

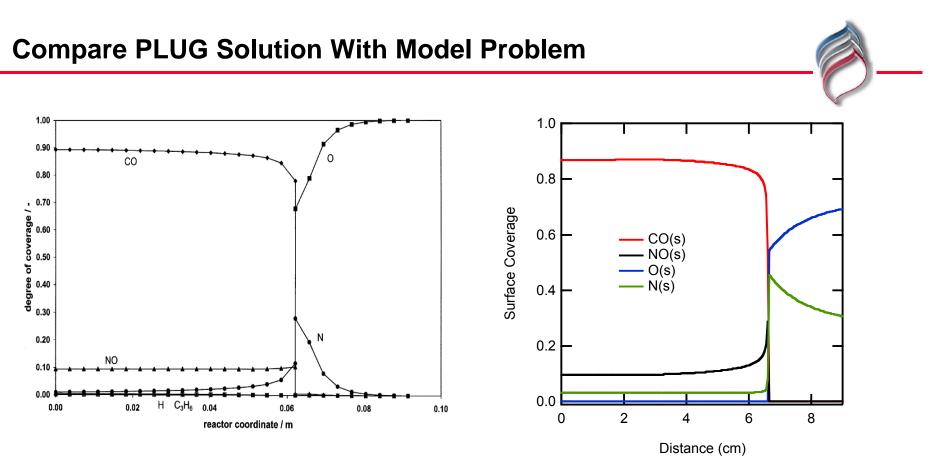
SURFACE REACTIONS CONSIDERED	A b))	Е
1. CO+PT(s)=>CO(s)	5.00E-01	0.0	0.0
Forward order PT(s) 1.000E+00	3.00E-01	0.0	0.0
Coefficients are sticking parameters			
 CO(s)=>CO+PT(s) 	1.60E+14	0.0	112.0
3. $02+2PT(s) => 0(s) + 0(s)$	1.00E-02		0.0
5. 02+2F1(S)=>0(S)+0(S) Forward order PT(s) 1.000E+00	1.00E-02	0.0	0.0
Coefficients are sticking parameters	1.85E+21	0.0	217.5
4. O(s)+O(s)=>O2+2PT(s)			
5. NO+PT(s)=>NO(s)	5.00E-01	0.0	0.0
Forward order PT(s) 1.000E+00			
Coefficients are sticking parameters	5 005 100		100 5
6. NO(s)=>NO+PT(s)	5.00E+13		
7. C3H6+3PT(s)=>C3H6(3s)	3.50E-01	0.0	0.0
Forward order PT(s) 1.000E+00			
Coefficients are sticking parameters			
8. C3H6(3s)=>C3H6+3PT(s)	1.00E+13		57.3
9. H2+2PT(s)=>H(s)+H(s)	4.60E-02	0.0	0.0
Forward order PT(s) 1.000E+00			
Coefficients are sticking parameters			
10. H(s)+H(s)=>H2+2PT(s)	3.70E+21	0.0	67.4
11. NO(s) +PT(s) =>N(s) +O(s)	1.11E+19	0.0	79.4
12. CO(s)+O(s)=>CO2+2PT(s)	3.70E+20	0.0	60.0
13. NO(s) +N(s) =>N2+O(s) +PT(s)	7.41E+17	0.0	87.8
14. $N(s) + N(s) = > N2 + 2PT(s)$	1.11E+19	0.0	120.0
15. C3H6(3s)+60(s)=>3CO(s)+3H2O+6PT(s)	2.22E+22	0.0	62.7
Forward order C3H6(3s) 1.000E+00			
Forward order O(s) 1.000E+00			
16. 2H(s)+O(s)=>H2O+3PT(s)	3.70E+21	0.0	17.4
Forward order H(s) 1.000E+00			
Forward order O(s) 1.000E+00			



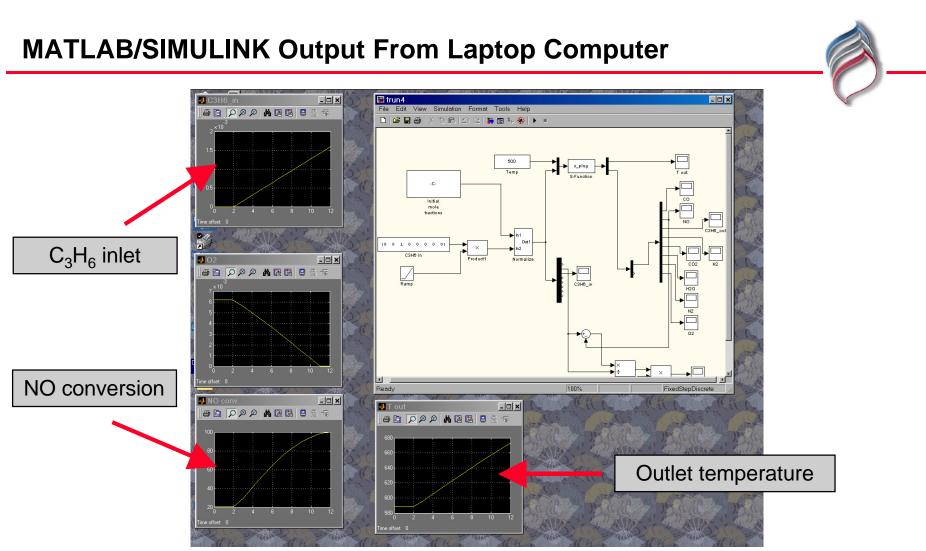
- Solutions from Hoebink et al.
 - Abrupt light-off behavior, fast reactions, large heat release, multiple solutions
- Hoebink et al. had to stabilize their numerical integrator to solve problem
 - Analytical Jacobian, artificial washcoat temperature, continuation methods


CHEMKIN / PLUG Solution

- DASSL able to grind through light-off condition
 - No need to invoke methods used by Hoebink et al.
- Solution very sensitive to external heat transfer
 - Position of light-off tuned by heat transfer coefficient


Inlet Gas	%Vol.
CO	1.40
02	1.69
NO	0.11
C ₃ H ₆	0.06
H ₂	0.47
H ₂ O	10.00
CO ₂	14.00
N ₂	72.27

- Species mole fractions subtlety different
 - Solution methods vary
 - Heat transfer term in energy balance not identical


- Abrupt change in surface coverage indicates light-off position
 - Create difficulty for numerical integrator
- Final temperature predicted by PLUG lower than model problem
 - Affects steady-state O(s) and N(s) coverage after light-off

MATLAB/SIMULINK

DEMONSTRATION

- Total simulation time for 12 PLUG calculations less than 1 minute
 - Affect of a gradual ramp in the C_3H_6 inlet concentration at 500 K

- More efficient integrators for solving stiff problems
 - DASSL works in some cases, but still has trouble
- General, problem independent platforms
 - Handling kinetic and thermochemical information (CHEMKIN)
 - Standardize reactor models (include realistic treatment of transport)
- Advanced applications possible under CHEMKIN/SIMULINK environment