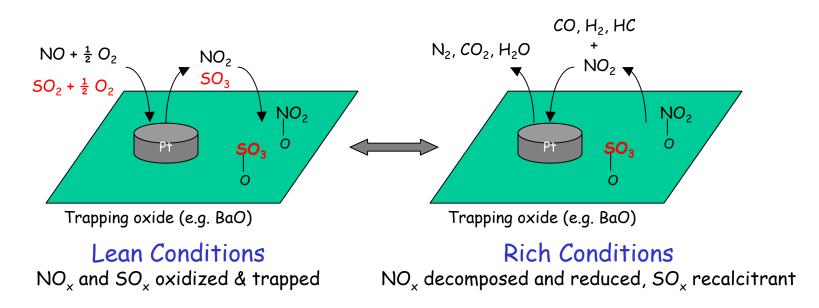
S

First-principles comparison of NO $_{\rm X}$ and SO $_{\rm X}$ storage mechanisms on alkaline earth oxides

<u>Bill Schneider</u> and Ken Hass Chemistry and Environmental Science Department Ford Research Laboratory

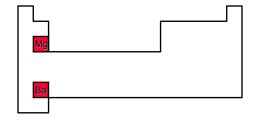
Marina Miletic and John Gland Chemical Engineering and Chemistry Departments University of Michigan



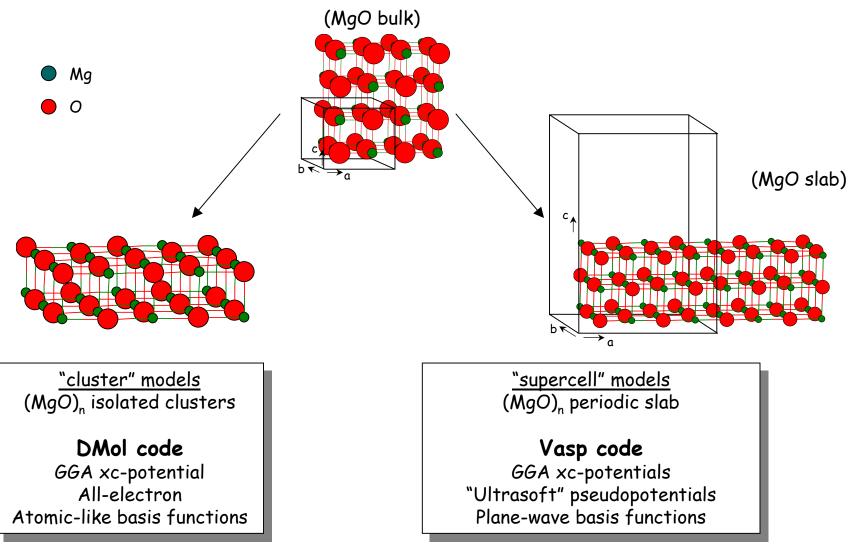
DOE CLEERS workshop

October 16. 2001

Molecular mechanism of NO_x trapping on oxides

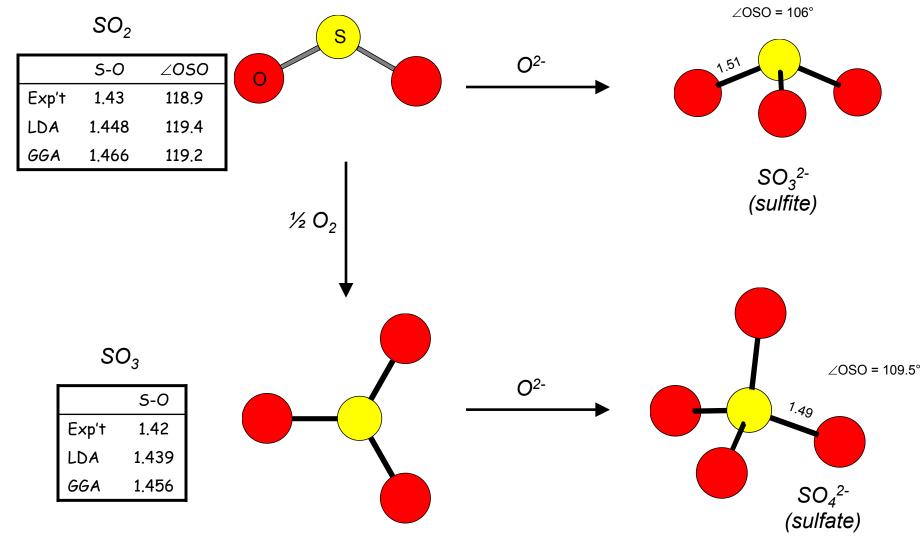

Key Questions:

- \star How does NO_x get oxidized and adsorbed on a trapping material?
- * How does the SO_x chemistry compare to NO_x?
- * How can we select trap materials to optimize selectivity for NO_x over SO_x?


★ Is this accepted NO_× trap picture valid?

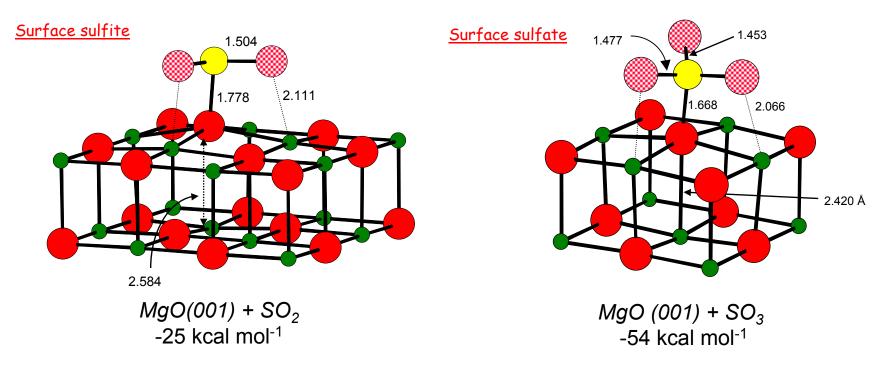
Alkaline Earth Oxide Adsorbents for NO_× Aftertreatment

- ★ Overall objectives
 - o To understand the intermediates, the thermodynamics, and the kinetics of adsorption, oxidation, and storage of NO_x and SO_x on metal oxides
 - o To use this information to help guide the selection of NO_x trap materials and the development of kinetic models of NO_x trap function
- \star This work
 - o Use first-principles methods to simulate adsorption chemistry
 - o Atomic-level models provide detailed understanding of adsorption phenomena
 - o Focus on SO_x and NO_x on MgO
 - o Prototypical alkaline earth oxide
 - o Component of proposed low temperature NO_x traps
 - o Computationally convenient
 - o Easy to obtain controlled materials for experiments
 - o Numerous experimental results available


MgO Cluster and Supercell Models

October 16. 2001

DOE CLEERS workshop


Sulfur Oxides-Lewis Acids

October 16. 2001

DOE CLEERS workshop

SO_{x} Chemisorption on MgO Terrace

- \star SO₂ and SO₃ chemisorb at Lewis base oxygen anions
 - o Form surface "sulfites" and "sulfates," respectively
 - o Pronounced local distortions of oxide surface
 - o Weak coverage dependence on adsorption energy
- * Adsorption enhanced 20 30 kcal mol⁻¹ at step edges
- ★ Similar results on BaO surface

MgO + SO_x Vibrational Spectroscopy

	calc'd (LDA, CPMD, cm ⁻¹)			exp't (cm ⁻¹)		
	ν_{asym}	v_{sym}		v_{asym}	v_{sym}	
SO ₂	1318	1119		1361	1151	
MgO(100) + SO ₂						
physisorbed	1251	1075		1339	1132	
chemisorbed	1096	1017		<u>1030-1050</u>	950-960	
MgO(103) + SO ₂	1041	962		"	"	
	Ve'	Ve'	Va'	Ve'	Ve'	Va'
SO ₃	1345	1345	1026	1330	1330	1069
MgO(100) + SO ₃	1239	1204	999	1260	1100	930
MgO(103) + SO ₃	1274	1094	955			"

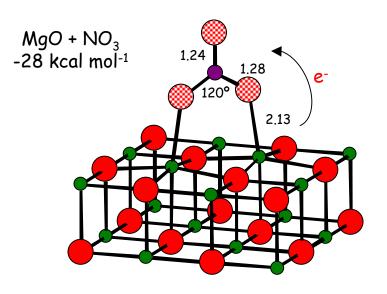
Schneider, Li, and Hass, JPC B 2001, 105, 6972

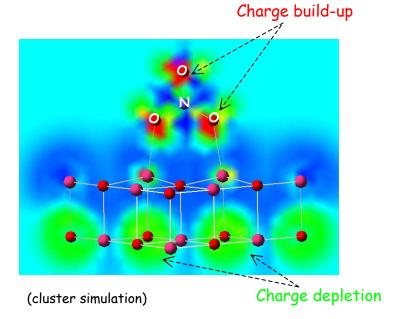
* MgO powder + SO_2


- o Observed "surface sulfite" consistent with calculated SO₂ chemisorption
- o Observed physisorption NOT consistent with calculation—likely an SO $_{\rm 2}$ overlayer on chemisorbed SO $_{\rm 2}$
- * MgO powder + $SO_2 + O_2$
 - o "Surface sulfite" observed at low temperatures
 - o Higher temperature "surface sulfate" consistent with calculated SO_3 chemisorption

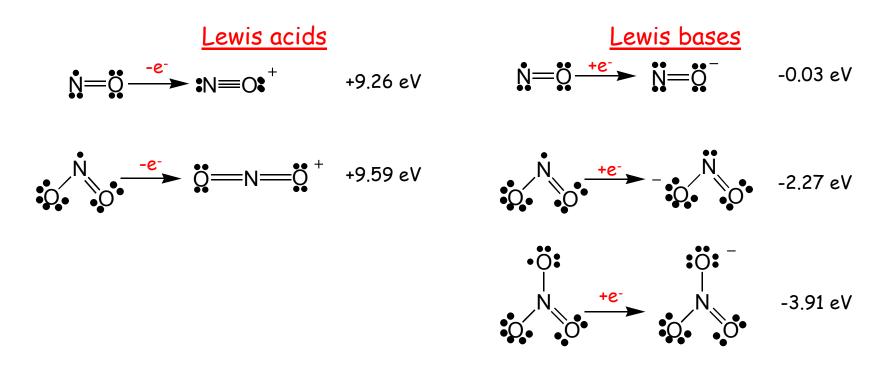
How does NO_x adsorb on MgO? (First-order guess)

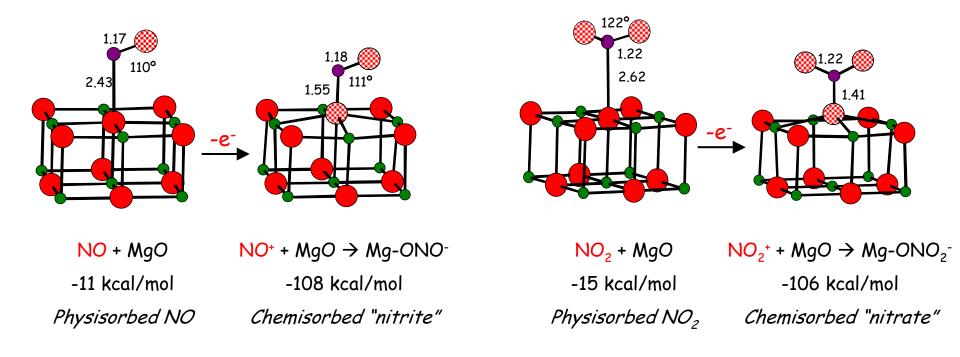
Common nitrogen oxides: NO, NO₂, NO₃


NO _x as <u>Lewis acid</u>	NO _x as <u>Lewis base</u>	
O _s -NO	Mg _s -ONO	"nitrite"
O _s -NO ₂	Mg _s - <mark>ONO</mark> 2	"nitrate"


NO·/NO₂· Physisorption on MgO Terrace

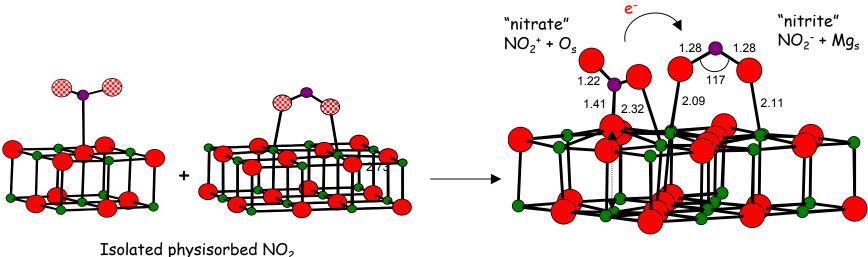
- \star NO and NO₂ physisorb on MgO terraces
 - o Low NO_{x} Lewis basicity produces weak adsorbate-surface interactions
 - o Charge-dipole interaction with weak charge transfer to adsorbate
- Not consistent with observations of "nitrite" and "nitrate" upon exposure of MgO to NO_x!


NO₃· Adsorption on MgO Terrace


- * NO_3 binds more strongly than NO/NO_2 to MgO terraces
 - o NOT via Lewis acid-base interaction through surface O²⁻, rather...
 - o Strongly oxidizing NO $_3$ draws nearly 1 electron from MgO
 - o Product "NO3-" coordinates to surface Mg²⁺
 - o Multiple adsorbates strongly repel one another
- * Is this the correct model for nitration of MgO by NO_2 ?

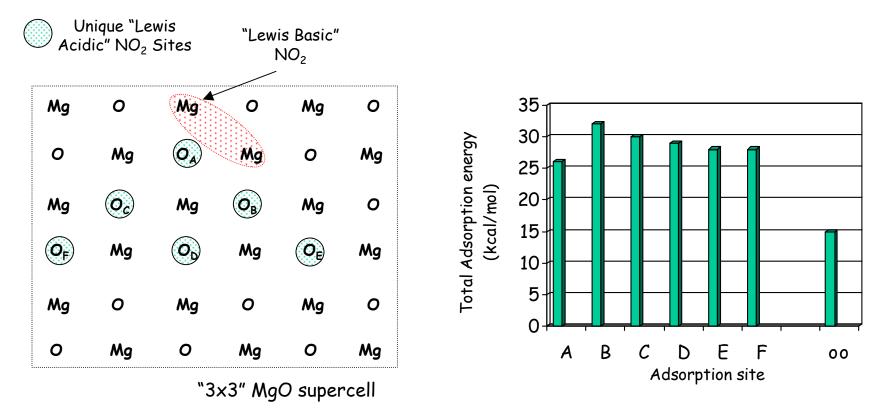
Lewis Acid/Base Chemistry of NO_x

- \star Lewis acid and base forms of NO_x generated by reduction and oxidation by one electron
- \star Key questions:
 - o Do ionic NO $_{\rm x}$ forms bind more strongly to MgO than neutral ones?
 - o Can two NO_{x} molecules exchange an electron to produce complementary Lewis acid and base pairs?


NO_{x}^{+} as Powerful Lewis Acids

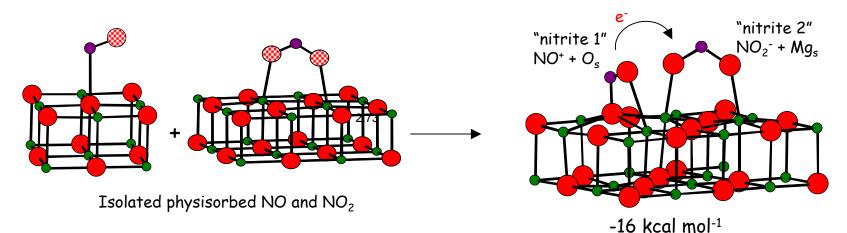
- **\star** NO⁺/NO₂⁺ strongly chemisorb on surface oxygen sites
 - o Geometric changes consistent with chemisorption
 - o Pronounced adsorption energy enhancement over neutrals
- * Somewhat less pronounced differences between NO2-/NO3- and NO2/NO3

October 16. 2001


<u>Cooperative</u> NO₂ Adsorption on MgO(001)

-15 kcal mol⁻¹ "cooperative" chemisorption

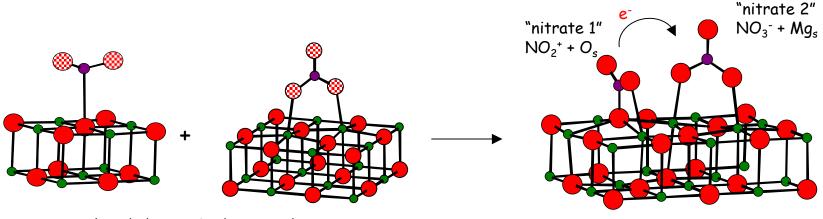
- * Two NO₂ form a cooperatively bound Lewis acid and base pair
 - o Charge transfer enhances binding of <u>both</u> adsorbates
 - o Structural/charge modifications consistent with chemisorption
 - o Binding energy enhanced by 15 kcal mol⁻¹ (100%) over two separated NO₂!
- Mixed nitrite/nitrate consistent with experimental observation for NO₂-exposed MgO


Distance Dependence of NO₂ Cooperative Adsorption

- ★ Cooperative effect decreases slowly with adsorbate separation
 - o e⁻ transfer can occur over several Angstroms

Cooperative NO + NO_2 Adsorption

"Nitrited" MgO(001)



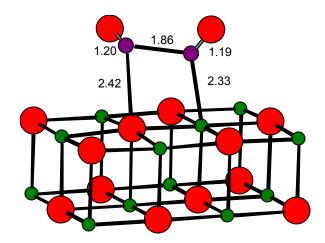
- **\star** NO + NO₂ cooperatively chemisorb as Lewis acid/base pairs
 - o Form two distinct types of surface nitrite
 - Binding energy enhanced by 16 kcal mol⁻¹ (factor of two!) over isolated adsorbates
- * Surface nitrite formation energetically competetive with sulfite (?)

 $MgO(001) + 2 NO + \frac{1}{2} O_2 \rightarrow Mg(NO_2)_2 -60 \text{ kcal mol}^{-1}$ 2{MgO(001) + SO₂ → Mg(SO₃)} ~ -50 kcal mol^{-1}

Cooperative $NO_2 + NO_3$ Adsorption

"Nitrated" MgO(001)

Isolated physisorbed NO_2 and NO_3

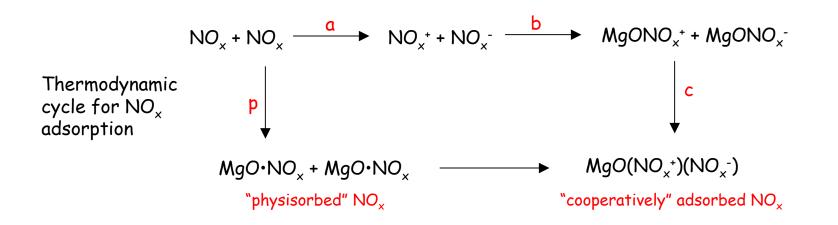

-20 kcal mol⁻¹

- * NO_2 + NO_3 cooperatively chemisorb as Lewis acid/base pairs
 - o Form two distinct types of surface nitrate
 - o Binding energy enhanced by 20 kcal mol⁻¹ over isolated adsorbates
- ★ Sulfation strongly preferred over nitration (?)

 $MgO(001) + 2 NO_2 + \frac{1}{2} O_2 \rightarrow Mg(NO_3)_2$ -59 kcal mol⁻¹

2 {MgO(001) + SO₂ + $\frac{1}{2}$ O₂ → Mg(SO₄)} ~ -144 kcal mol⁻¹

Cooperative NO + NO Adsorption?



MgO(001) + NO: -5 kcal mol⁻¹ GGA

MgO(001) + 2 NO: -15 kcal mol⁻¹ GGA

- * NO adsorption generates physisorbed NO dimers
 - o No cooperative adsorption effect
 - o NO + NO \rightarrow NO⁺ + NO⁻ = 9.23 eV ionization penalty > other NO_x pairs

Thermodynamics of Cooperative Adsorption

Reaction energies (eV)

Step p	NO _x /NO _x	Step a	Step b	Step c	Total a + b + c		
-0.52	NO/NO	9.23	?				
-0.86	NO ₂ /NO ₂	7.32	-6.25	-2.42	-1.35		
-0.69	NO/NO ₂	6.99	-6.34	-2.08	-1.43		
-1.63	NO ₂ /NO ₃	5.68	-5.88	-2.27	-2.47		

October 16. 2001

DOE CLEERS workshop

Implications

- \star NO_x chemisorption requires presence of both Lewis acid and base sites
 - o Novel "cooperative" chemisorption phenomenon consistent with available experiment
 - o Computational tests underway to extend to other oxides
 - o Provides more physically realistic representations for NO_{x} trap kinetic models
- * Differences with SO_x provide handle that could be exploited to design materials selective for NO_x storage
 - o Computationally screen simple oxides and oxide mixtures for NO_x vs. SO_x adsorption tendency