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Molecular mechanism of NOx trapping on oxides

Key Questions:
How does NOx get oxidized and adsorbed on a trapping material?
How does the SOx chemistry compare to NOx?
How can we select trap materials to optimize selectivity for NOx
over SOx?

Is this accepted NOx trap picture valid?
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Alkaline Earth Oxide Adsorbents for NOx
Aftertreatment

Overall objectives
o To understand the intermediates, the thermodynamics, and the kinetics of 

adsorption, oxidation, and storage of NOx and SOx on metal oxides 
o To use this information to help guide the selection of NOx trap materials and 

the development of kinetic models of NOx trap function

This work
o Use first-principles methods to simulate adsorption chemistry

o Atomic-level models provide detailed understanding of adsorption phenomena
o Focus on SOx and NOx on MgO

o Prototypical alkaline earth oxide
o Component of proposed low temperature NOx traps
o Computationally convenient
o Easy to obtain controlled materials for experiments
o Numerous experimental results available
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BaBa
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MgO Cluster and Supercell Models
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(MgO)n isolated clusters
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Sulfur Oxides-Lewis Acids

SO2

SO3

½ O2

SO3
2-

(sulfite)

SO4
2-

(sulfate)

O2- 1.51

∠OSO = 106°

1.49

∠OSO = 109.5°

S

O

119.41.448LDA

119.21.466GGA

118.91.43Exp’t

∠OSOS-O

1.439LDA

1.456GGA

1.42Exp’t

S-O O2-



October 16. 2001 DOE CLEERS workshop

SOx Chemisorption on MgO Terrace

SO2 and SO3 chemisorb at Lewis base oxygen anions
o Form surface “sulfites” and “sulfates,” respectively
o Pronounced local distortions of oxide surface
o Weak coverage dependence on adsorption energy

Adsorption enhanced 20 – 30 kcal mol-1 at step edges
Similar results on BaO surface

MgO(001) + SO2
-25 kcal mol-1

1.778

1.504

2.111

2.584

MgO (001) + SO3
-54 kcal mol-1

2.420 Å

1.668

1.477 1.453

2.066

Surface sulfite Surface sulfate



MgO + SOx Vibrational Spectroscopy

MgO powder + SO2
o Observed “surface sulfite” consistent with calculated SO2 chemisorption
o Observed physisorption NOT consistent with calculation—likely an SO2 overlayer on 

chemisorbed SO2

MgO powder + SO2 + O2
o “Surface sulfite” observed at low temperatures
o Higher temperature “surface sulfate” consistent with calculated SO3 chemisorption

calc'd (LDA, CPMD, cm-1) exp't (cm-1)
νasym νsym νasym νsym

SO2 1318 1119 1361 1151
MgO(100) + SO2

physisorbed 1251 1075 1339 1132
chemisorbed 1096 1017 1030-1050 950-960

MgO(103) + SO2 1041 962 " "

νe' νe' νa' νe' νe' νa'

SO3 1345 1345 1026 1330 1330 1069
MgO(100) + SO3 1239 1204 999 1260 1100 930
MgO(103) + SO3 1274 1094 955 " " "

Schneider, Li, and Hass, JPC B 2001, 105, 6972
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How does NOx adsorb on MgO?
(First-order guess)

“nitrite”Os-NO Mgs-ONO

“nitrate”Os-NO2 Mgs-ONO2

NOx as 
Lewis acid

NOx as 
Lewis base

Common nitrogen oxides:  NO,  NO2,  NO3
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NO•/NO2• Physisorption on MgO Terrace

NO and NO2 physisorb on MgO terraces
o Low NOx Lewis basicity produces weak adsorbate-surface interactions

o Charge-dipole interaction with weak charge transfer to adsorbate
Not consistent with observations of “nitrite” and “nitrate” upon
exposure of MgO to NOx!

MgO(001) + NO:

-6 kcal mol-1

Physisorbed NO2

2.27

1.19

110º

Physisorbed NO

MgO(001) +NO2 O-down

-10 kcal mol-1

2.25

1.24

125º

MgO(001) +NO2 N-down

-5 kcal mol-1

2.25

1.24

128º
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NO3• Adsorption on MgO Terrace

NO3 binds more strongly than NO/NO2 to MgO terraces
o NOT via Lewis acid-base interaction through surface O2-, rather…
o Strongly oxidizing NO3 draws nearly 1 electron from MgO
o Product “NO3

-” coordinates to surface Mg2+

o Multiple adsorbates strongly repel one another
Is this the correct model for nitration of MgO by NO2?

MgO + NO3
-28 kcal mol-1

2.13

1.28
1.24

120º N

O

O O

Charge build-up

Charge depletion

e-

(cluster simulation)
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Lewis Acid/Base Chemistry of NOx

Lewis acid and base forms of NOx generated by reduction and 
oxidation by one electron
Key questions:
o Do ionic NOx forms bind more strongly to MgO than neutral ones?
o Can two NOx molecules exchange an electron to produce complementary 

Lewis acid and base pairs?

Lewis acids
-e-

-e- +e-

+e-

ON ON ONON

Lewis bases
-0.03 eV+9.26 eV
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O
N OO +9.59 eV -2.27 eV

O
N

O
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O
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O

O
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NOx
+ as Powerful Lewis Acids

NO+/NO2
+ strongly chemisorb on surface oxygen sites

o Geometric changes consistent with chemisorption
o Pronounced adsorption energy enhancement over neutrals

Somewhat less pronounced differences between NO2
-/NO3

- and 
NO2/NO3

2.43

1.17

110º

-e-

NO + MgO

-11 kcal/mol

Physisorbed NO

NO+ + MgO Mg-ONO-

-108 kcal/mol

Chemisorbed “nitrite”

1.55

1.18

111º 2.62
1.22

122º

NO2 + MgO

-15 kcal/mol

Physisorbed NO2

-e-

NO2
+ + MgO Mg-ONO2

-

-106 kcal/mol

Chemisorbed “nitrate”

1.41

1.22
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Cooperative NO2 Adsorption on MgO(001)

Two NO2 form a cooperatively bound Lewis acid and base pair
o Charge transfer enhances binding of both adsorbates
o Structural/charge modifications consistent with chemisorption
o Binding energy enhanced by 15 kcal mol-1 (100%) over two separated NO2!

Mixed nitrite/nitrate consistent with experimental observation for 
NO2-exposed MgO

-15 kcal mol-1

“nitrate”
NO2

+ + Os

“nitrite”
NO2

- + Mgs

“cooperative” chemisorption

1.41

1.22

2.32 2.09 2.11

1.28 1.28

117

e-

2.73+

Isolated physisorbed NO2
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O

Distance Dependence of NO2 Cooperative 
Adsorption

Cooperative effect decreases slowly with adsorbate separation
o e- transfer can occur over several Angstroms

Mg Mg O
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Cooperative NO + NO2 Adsorption

NO + NO2 cooperatively chemisorb as Lewis acid/base pairs
o Form two distinct types of surface nitrite
o Binding energy enhanced by 16 kcal mol-1 (factor of two!) over isolated 

adsorbates
Surface nitrite formation energetically competetive with sulfite (?)

-16 kcal mol-1

e-

“Nitrited” MgO(001)

“nitrite 1”
NO+ + Os

“nitrite 2”
NO2

- + Mgs

MgO(001) + 2 NO + ½ O2 Mg(NO2)2 -60 kcal mol-1

2{MgO(001) + SO2 Mg(SO3)} ~ -50 kcal mol-1
MgO(001) + 2 NO + ½ O2 Mg(NO2)2 -60 kcal mol-1

2{MgO(001) + SO2 Mg(SO3)} ~ -50 kcal mol-1

2.73
+

Isolated physisorbed NO and NO2
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Cooperative NO2 + NO3 Adsorption

NO2 + NO3 cooperatively chemisorb as Lewis acid/base pairs 
o Form two distinct types of surface nitrate
o Binding energy enhanced by 20 kcal mol-1 over isolated adsorbates

Sulfation strongly preferred over nitration (?)

“nitrate 1”
NO2

+ + Os

“nitrate 2”
NO3

- + Mgs

MgO(001) + 2 NO2 + ½ O2 Mg(NO3)2 -59 kcal mol-1

2 {MgO(001) + SO2 + ½ O2 Mg(SO4)} ~ -144 kcal mol-1
MgO(001) + 2 NO2 + ½ O2 Mg(NO3)2 -59 kcal mol-1

2 {MgO(001) + SO2 + ½ O2 Mg(SO4)} ~ -144 kcal mol-1

-20 kcal mol-1

“Nitrated” MgO(001)
e-

+

Isolated physisorbed NO2 and NO3
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Cooperative NO + NO Adsorption?

NO adsorption generates physisorbed NO dimers
o No cooperative adsorption effect
o NO + NO NO+ + NO- = 9.23 eV ionization penalty > other NOx

pairs

2.42 2.33

1.86
1.191.20 MgO(001) + NO: -5 kcal mol-1 GGA

MgO(001) + 2 NO: -15 kcal mol-1 GGA
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Thermodynamics of Cooperative Adsorption

-2.47-2.27-5.885.68NO2/NO3-1.63

-1.43-2.08-6.346.99NO/NO2-0.69

-1.35-2.42-6.257.32NO2/NO2-0.86

------?9.23NO/NO-0.52

Total
a + b + cStep cStep bStep aNOx/NOxStep p

NOx + NOx NOx
+ + NOx

- MgONOx
+ + MgONOx

-

MgO•NOx + MgO•NOx MgO(NOx
+)(NOx

-)

a b

c

“physisorbed” NOx “cooperatively” adsorbed NOx

p
Thermodynamic 
cycle for NOx
adsorption

Reaction energies (eV)

b + c ~ -8.5 eV
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Implications

NOx chemisorption requires presence of both Lewis acid and 
base sites
o Novel “cooperative” chemisorption phenomenon consistent with 

available experiment
o Computational tests underway to extend to other oxides
o Provides more physically realistic representations for NOx trap 

kinetic models

Differences with SOx provide handle that could be exploited 
to design materials selective for NOx storage
o Computationally screen simple oxides and oxide mixtures for 

NOx vs. SOx adsorption tendency


