Microkinetics modeling of NOx SCR

Presented to Diesel Cross Cut

16 October 2001

Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140-2390

Overview

Microkinetics models can suggest ways to improve the formulation and operation of NOx SCR catalysts.

- In microkinetics models the hypothesized reaction network is represented by many elementary steps and solved numerically.
- A NOx SCR network needs to accommodate NOx reduction, reductant oxidation and the formation of spectator species
- We are in the process of refining our network for SCR, including ammonia storage.

Microkinetics

In microkinetics models the hypothesized reaction network is represented by many elementary steps and solved numerically.

Reactions are not assumed to be equilibrated or irreversible

Reaction rates are expressed in Arrhenius form, $r = A \exp(-E_a/RT)$, with parameters derived from transition state theory or fundamental measurements

network			
$\begin{array}{l} C_{3}H_{6}+Rh=C_{3}H_{6}Rh\\ C_{3}H_{6}Rh+Rh=C_{3}H_{5}Rh+HRh\\ Rh+C_{3}H_{5}Rh=C_{2}H_{4}Rh+CHRh\\ C_{2}H_{4}Rh+Rh=2CH_{2}Rh\\ CH_{2}Rh+Rh=CHRh+HRh\\ CHRh+ORh=CORh+HRh\\ CO+Rh=CORh\\ CORh+ORh=CO_{2}+2Rh\\ O_{2}+2Rh=O_{2}Rh_{2}\\ O_{2}Rh_{2}=2ORh\\ H_{2}+Rh=H_{2}Rh\\ H_{2}Rh+Rh=2HRh\\ HRh+ORh=OHRh+Rh\\ H_{2}O+Rh=H_{2}ORh\\ H_{2}ORh+HRh=2OHRh\\ HRh+ORh=2OHRh\\ HRh+OHRh=2OHRh\\ HRh+OHRh=H_{2}ORh+Rh\\ \end{array}$			
•			
•			
•			

A Microkinetics

Microkinetics

We construct microkinetics networks by building up the chemistry under the constraints of absolute rate theory and thermodynamics.

Transition state theory provides excellent first guesses for the values of pre-exponential factors for elementary steps.

Molecular Adsorption		Molecular Desorption			
$A + * \rightarrow A^*$ Mobile transition state Immobile transition state	$r = A \left[\exp \left(\frac{E_a}{k_B T} \right) \right] P_A \theta *$ $A = 10^3 / Pa s$ $A = 10^1 / Pa s$	$A^* \rightarrow A + *$ Similar freedom for adsorbed & transition states More rotational & translational freedom for transition state	$r = A \left[\exp \left(\frac{E_a}{k_B T} \right) \right]_{A*}$ $A = 10^{13} / \text{ s}$ $A = 10^{16} / \text{ s}$		
Dissociative		Associative Des	orption		
Mobile transition state Immobile transition state	$r = A [exp - (E_a / \kappa_B I)] F_{A2}(\theta^{*})$ $A = 10^3 / Pa s$ $A = 10^1 / Pa s$	Mobile adsorbed & transition states w/full rotational freedom Mobile adsorbed & transition states w/o rotation Immobile adsorbed & transition states Immobile species with more rotational & translational freedom for transition state	$r = A [exp-(E_a / \kappa_B I)] (\theta_{A*})^{5}$ $A = 10^{8} / s$ $A = 10^{11} / s$ $A = 10^{13} / s$ $A = 10^{16} / s$		

Microkinetics

To assist in the construction of microkinetics networks, we have created ADL Bistro.

What it is

- A database for creating reaction networks connected to
- MatLab code for simulating chemical reactors

56 21 20		9
Statement Stream	and the property of the local data and	
Bank (Multiplicate) (1994	and Constant (Annal Constant)	
AND DESCRIPTION OF THE OWNER, NAME	PROPERTY OF A STATE OF A STATE	
the later is a later that	Annual Strength Strength operation	
	I ST IN LAND IN LADING THE TANK	
105.071.0800	TRAC OF NAME AND DO TO THE OWNER.	13
1000 cm 1 1000 cm	tokent an inext and or in the set	
BY 1000 + 1000 - 001	convert that taken and to be the second seco	27
1000-01-0000	-de-1	81
748 ett = 560 etd	100+1 43,100+1 41(31 () (0) (0)	
- 100 + 101 - 710 + 81	10000 411000 00111 (C	
10.001.000	1967 10 1967 1978 18 ()	
1000 1 001 1 001 100	1000-10 1011 100-0	11
00001000	1 100 1 10 1 10 11 11 11 11 11 11 11 11	
1001-100	Transf. At 4 part of the lot of the	
	100-1 10 100-1 414 10 101	
and the local in	The second secon	
100 - 001 - 000 - 0	and the second s	
An other states in		
A COLORED		
31-14 - 40E	the second secon	
12 Test visions	the strategies in the second with the second	

What it does

- Accurately describes both steady state and transient performance of chemical reactors
- Facilitates communication among Chemists and Chemical Engineers
- Permits easy extension of reaction networks to account for aging and degradation phenomena

How we are using it

- Development of novel aftertreatment systems for Diesel engines
- Sizing of a vent catalyst for a fast cooking oven
- Debottlenecking of a process for making an agrochemical
- Estimating heat release rates for exothermic reactions

A NOx SCR network needs to accommodate NOx decomposition, reductant oxidation and the formation of spectator species.

We have constructed a NOx decomposition network that is broadly consistent with the literature.

	A _f	Eo	A _r	ΔH
NO + Cu = NOCu	6.00 × 10 ²	35.0	1.00 × 10 ¹³	-69.0
NO + NOCu = NOCuON	6.00 × 10 ²	35.0	1.00 × 10 ¹³	-39.0
$NOCuON + Cu = N_2OCu + OCu$	1.00 × 10 ¹²	0.0	1.00 × 10 ¹³	-97.0
$N_2O + Cu = N_2OCu$	6.00 × 10 ²	0.0	1.00 × 10 ¹³	-29.0
$O_2Cu + Cu = 2 OCu$	1.00 × 10 ¹¹	2.5	1.00 × 10 ¹³	-74.0
$O_2 + Cu = O_2Cu$	1.00 × 10 ³	42.0	1.00 × 10 ¹³	-80.0
$N_2OCu + Cu = N_2Cu + OCu$	2.00 × 10 ⁹	10.0	2.00 × 10 ⁹	-150.0
$N_2 + Cu = N_2Cu$	1.00 × 10 ³	20.0	1.00 × 10 ¹³	-20.0
$NOCu + OCu = NO_2Cu + Cu$	1.00 × 10 ¹³	10.0	1.00 × 10 ¹³	-10.0

In particular, the simulation supports the hypothesis that the oxygen left by decomposed NO participates in the formation of surface NOx.

NOx SCR

We are in the process of refining our network for SCR, including ammonia storage.

- Without a direct interaction between M-NO and M-NHx the model shows only ammonia decomposition.
- We are implementing ammonia storage by invoking acid sites in the oxidesupported catalyst.

	A _f	Eo	A _r	ΔH
NO + Cu = NOCu	6.00×10^2	35.0	1.00 × 10 ¹³	-69.0
NO + NOCu = NOCuON	6.00 × 10 ²	35.0	1.00 × 10 ¹³	-39.0
NOCuON + Cu = N_2 OCu + OCu	1.00 × 10 ¹²	0.0	1.00 × 10 ¹³	-97.0
$N_2O + Cu = N_2OCu$	6.00×10^2	0.0	1.00 × 10 ¹³	-29.0
$O_2 \overline{C} u + C u = 2 \overline{O} C u$	1.00 × 10 ¹¹	2.5	1.00 × 10 ¹³	-74.0
$O_2 + Cu = O_2Cu$	1.00 × 10 ³	42.0	1.00 × 10 ¹³	-80.0
$N_2OCu + Cu = N_2Cu + OCu$	2.00 × 10 ⁹	10.0	2.00 × 10 ⁹	-150.0
$\overline{N}_2 + Cu = N_2 Cu$	1.00 × 10 ³	20.0	1.00 × 10 ¹³	-20.0
NOCu $+$ OCu = NO ₂ Cu + Cu	1.00 × 10 ¹³	10.0	1.00 × 10 ¹³	-10.0
$H_2 + Cu = H_2 \overline{Cu}$	1.00 × 10 ⁴	0.0	1.00 × 10 ⁹	-43.0
$H_2C\bar{u} + Cu = 2\bar{H}Cu$	4.00 × 10 ¹²	2.0	1.00 × 10 ¹²	-43.0
HŪu + OCu = HOCu + Cu	5.00 × 10 ¹³	30.0	1.00 × 10 ¹³	-62.0
$HCu + HOCu = H_2OCu + Cu$	5.00 × 10 ¹³	56.0	5.00 × 10 ¹¹	-43.0
$H_2O + Cu = H_2OCu$	1.00 × 10 ⁴	0.0	1.00 × 10 ¹⁰	-24.0
$NH_3 + Cu = NH_3Cu$	1.00 × 10 ³	30.0	1.00 × 10 ⁹	-20.0
$NH_3Cu + Cu = NH_2Cu + HCu$	1.00 × 10 ¹¹	50.0	2.00 × 10 ¹⁰	-45.0
$NH_{2}Cu + Cu = NHCu + HCu$	1.00 × 10 ¹¹	70.0	2.00 × 10 ¹⁰	-15.0
NHCu + Cu = NCu + HCu	4.00 × 10 ⁹	70.0	8.00 × 10 ⁸	-15.0
$N_2Cu + Cu = 2 NCu$	1.00 × 10 ¹³	0.0	1.00 × 10 ¹³	-15.0