

Flow-Reactor Studies to Support Modeling of the Soot Filters Regeneration Process

3rd CLEERS Workshop October 17-18, Detroit (MI)

Alex Yezerets, Neal Currier, Sriram Popuri, Arvind Suresh

cummins

Outline:

- Introduction:
 - Soot combustion studies: On-Engine vs. Micro- and Pilot-Reactors
- Experimental
 - Reaction set-up and procedures
- Results
 - Qualitative:
 - Soot combustion by O₂ at different H₂O concentrations
 - Soot vs. carbon black
 - Quantitative:
 - Kinetic processing of the data
- Conclusions

Introduction:

Soot Filters Regeneration Studies

Limitations of the On-Engine Studies

- Soot loading:
 - Uncertainty of soot generation rate and continuous soot combustion rate (especially for CRT and catalyzed traps).
- Soot regeneration:
 - Impossible to vary one parameter at a time (e.g., only temperature)
 - Amount of incoming soot during regen? Other uncertainties (e.g., $T_{exhaust}$ vs. T_{filter})
 - Criteria of success: $\Delta P = f(\text{soot amount & distribution, T, flow rate, transients})$

Micro-Reactor Studies

• Fundamental study of the soot oxidation process= $f(T, O_2, NO, NO_2, H_2O, etc)$

Pilot-Reactor Studies

- Oxidation of soot loaded on the soot filter cores:
 - Study of $\Delta P=f(\text{soot loading, degree of regen})$ at different T and flow rates
 - How the "engineering" factors (heat & mass transfer) affect the soot combustion?
 - Effect of various catalysts

Experimental Setup

Sample

- **Soot**: Real diesel soot sample "A"
- Carbon black: Provided by Cabot

Reactor Loading

• Soot powder mixed with quartz chips for better heat dissipation

Gas:

- O₂-10.0% (vol.), H₂O 0-10% (vol.) / He <u>Analysis:</u>
- "DOC" catalyst downstream (oxidizes CO to CO₂ to simplify material balancing)
- Mass-spec analyses (broad dynamic range)
- This configuration allowed to perform studies in a broad range of temperatures (conversions)

Effect of H₂O on soot oxidation by O₂

- Soot combustion by O_2 was enhanced by the presence of H_2O up to ~10%.
- Combustion of carbon black was not affected by the presence of 10% H₂O.
- Origin of soot significantly affects both qualitative and quantitative results (possibly one of the reasons of controversy of the literature data)
- Consistent material recovery was achieved, allowing us to apply quantitative kinetic processing to the data

Arrhenius plot: 200-550°C

Obtained results are independent of the experimental technique:

- qualitatively similar transition from lower to higher Ea
- quantitatively (e.g., for 300-500°C: $E_a = 92$ vs. 95 kJ/mol)

Conclusions:

- Equipment and methodology for quantitative fundamental studies of soot oxidation were demonstrated.
- Cummins' reactor systems provide unique capabilities for studying soot combustion (sensitivity, time resolution)
- Presence of H_2O has a different effect on the oxidation of diesel and synthetic soot samples. This emphasizes the dependence of the results on the origin and properties of the soot.
- Unexpected change in the kinetic behavior (reproduced by different techniques) needs to be understood:
 - Does soot undergo some changes during the experiment ("aging")?
 - Is there initial inhomogeneity of soot samples ("easy"- and "hard"burning moieties)? Is it related to the soot "age"?