$\mathbf{NO_x}$ Reduction with hydrocarbons or ammonia over zeolite based catalysts prepared by chemical vapor decomposition Wolfgang M.H. Sachtler Institute for Environmental Catalysis, Northwestern University Evanston IL, USA # NO_x Reduction with hydrocarbons or ammonia over zeolite based catalysts prepared by chemical vapor decomposition #### Wolfgang M.H. Sachtler, Institute for Environmental Catalysis, Northwestern University Evanston, IL USA #### **Abstract** De-NO_x catalysts for the emission from lean-burn engines must reduce NO_x to N_2 in the presence of a large excess of O_2 and H_2O . In view of the high space velocity such catalysts must be very active. They must also be highly selective, since the reductant should react specifically with the nitrogen oxides rather than with oxygen which is present at much higher concentration. As the emissions contain much H_2O , the performance of the catalysts should not be impeded by H_2O . Catalysts which meet these criteria are Fe/MFI, Co/MFI and Pd/MFI, where MFI is the zeolite which is often called ZSM-5 by its commercial trade name. The lecture focuses on Fe/MFI. When prepared by traditional ion exchange from aqueous solution, the performance of Fe/MFI is very poor. Excellent catalysts are prepared, however, by a technique based on the interaction of FeCl₃ <u>vapor</u> with the H-form of the zeolite. This technique leads to a much higher Fe loading than wet ion exchange, without favoring the formation of oxide clusters, which are known to catalyze the undesired combustion of the reductant with oxygen. Modern characterization techniques show that dinuclear [HO-Fe-O-Fe-OH]²⁻ ions are crucial sites. Studies of the reaction mechanism show that NO reduction with hydrocarbons includes three major steps: - (1) NO is oxidized to adsorbed nitro groups and nitrate ions, - (2) Reaction of these adsorbates with reductant molecules leads to amine-like structures, - (3) Adsorbed amines react with gas phase NO_x molecules forming N₂. With ammonia as the reductant, the reaction mechanism is basically the analogue of step 3. The NOx reduction rate is much higher with ammonia than with hydrocarbons, because steps (1) and (2) are short-cut. Ammonia intercepts the oxidation product of NO already in the state of N_2O_3 , so that the consumption ratio of NH₃/NO becomes 1/1. Co/MFI, and Pd/MFI, unlike Fe/MFI or Cu/MFI, show a remarkable De-NO_x performance with methane as the reductant, presumably because methane is activated by Pd° or Co° # SCR of NO over ZSM-5 Catalysts ### Experimental NO = 1000 ppm, $C_2H_4 = 250$ ppm, $O_2 = 2 \%$ Weight = 0.5 g, Flow Rate = 150 cc/min # Preparation of Fe/MFI with Fe/A1 = 1 by "sublimation method" $FeCl_3 vapor + H^+/_{MFI} \rightarrow [FeCl_2]^+/_{MFI} + HCl \uparrow$ $[FeCl_2]^+/_{MFI} + 2H_2O \rightarrow [Fe(OH)_2]^+/_{MFI} + 2HCI$ $2[Fe(OH)_2]^+/_{MFI} \rightarrow [HO-Fe-O-Fe-OH]^{2+}/_{MFI} + H_2O\uparrow$ SCR of NO with iso-C₄H₁₀ over Fe/zeolite catalysts Catalyst 0.20g ($^\circ$ Catalyst 0.20g, $^\circ$ Catalyst 0.2%, Cataly NO_x reduction with iso- C_4H_{10} over Fe/MFI catalyst prepared by sublimation Feed: NO: 0.1%; iso- C_4H_{10} : 0.1%; O_2 : 2.0%; GHSV = 3.6*105 h. 3.6 × 10 5/7 NO_x reduction with NH_3 over Fe/MFI catalyst prepared by sublimation Feed: NO: 0.1%; NH_3 : 0.1%; O_2 : 2.0%; $GHSV = 3.6 * 105 \cdot h^{-1}$ 3.6 × 105 h Reaction of $[^{15}N_2O_3 \Leftrightarrow ^{15}NO + ^{15}NO_2]$ over Fe/MFI, covered with adsorbed $^{14}NH_3$ at 300 K # Reaction of N₂O₃ (gas) with adsorbed NH₃ $$^{15}N_2O_{3, gas} + 2^{14}NH_{3, ads} = > 2^{14}N^{15}N + 3H_2O$$ **Result:** $^{14}N^{15}N: 100\%$ $^{14}N_2: 0\%$ Considering oxidation states, this means: $$N^{3-} + N^{3+} = > N_2$$ # Reduction of NO_x to N_2 with ammonia over three catalysts under identical conditions | \ Catal.
Temp. \ | Cu/MFI | Fe/MFI (wet ion exch.) | Fe/MFI (sublim) | |---------------------|--------|------------------------|-----------------| | 200°C | | | 30% | | 250°C | 5% | 9% | 48% | | 300°C | 20% | 27% | 80% | #### **Conditions:** Gas composition: 0.1% NO, 2.0% O₂, 0.1%NH₃ He to 1 bar Space velocity: 360,000 h⁻¹ Effect of reaction temperature on the selective catalytic reduction of NO over Fe/ZSM-5(Subl.) in the absence of $\rm H_2O$ NO 0.2%; i-C₄H₁₀ 0.2%; O₂ 3%; GHSV 42,000h⁻¹ NO to N_2 i- C_4H_{10} to CO_2 i-C4H10 to CO i-C₄H₁₀ ◆ effectiveness factor Effect of reaction temperature on the selective catalytic reduction of NO over La-promoted Fe/ZSM-5(subl.) in the presence of H₂O NO 0.2%; i-C₄H₁₀ 0.2%; O₂ 3%; H₂O 20%; GHSV 42,000h⁻¹ - NO to N₂ - [™] i-C₄H₁₀ to CO₂ - i-C4H10 to CO - ** i-C4H10 - effectiveness factor Powder catalyst, h/d=2*103 Stability test over La-promoted Fe/ZSM-5(subl.) NO 0.2%; i- C_4H_{10} 0.2%; O_2 3%; H_2O 20%; GHSV 42,000 h^{-1} ; 350°C NO to N_2 i- C_4H_{10} to CO_2 i- C_4H_{10} to CO_3 # Binuclear, oxygen-bridged Fe site [HO-Fe³⁺-O-Fe³⁺-OH]²⁺ #### Follows from: - 1 loading: Fe/Al_{lattice} = 1/1 - 1 TPR: $H_{cons}/Fe = 1/1$; $CO_{cons}/Fe = 1/2$ - 1 ESR: antiferromagnetic coupling - EXAFS (Res. Groups of Prins, Zürich and Koningsberger, Utrecht) CO TPR of Fe/ZSM-5: a) calcined b) calcined and heated in flowing He to 600°C ### Thermal Stability of NO_y FTIR spectra of NO_y on Fe/ZSM-5 at 200°C —— under a flow of 0.5% NO + 3% O₂ + He —— after exposure for 30min and purging with 3%O₂ + He #### NO_2 + Deposit ==> N_2 MS signal intensity upon circulating 10torr 15 NO + 80torr O $_2$ +10torr Ar over Fe/ZSM-5 covered with C $_x$ H $_y$ O $_z$ 15 N deposit ### $\frac{^{15}NO_2}{^{14}N} + \frac{^{14}N}{^{15}N}$ Deposit ==> $\frac{^{14}N^{15}N}{^{15}N}$ MS signal intensities upon circulating 10torr ^{15}NO + 80torr O_2 + 10torr Ar over Fe/ZSM-5 covered with $C_xH_yO_z^{-14}N$ deposit Formation of diazonium salt from amine with NO₂: $$R-NH_2 + 2NO_2$$ $$\Rightarrow [R=N=N]^+[NO_3]^- + H_2O$$ Decomposition of diazonium salt and hydride transfer from *iso*-C₄: $$[R=N=N]^{+}[NO_{3}]^{-} + (CH_{3})_{3}CH \rightarrow$$ $N_{2} + (CH_{3})_{3}C^{+}[NO_{3}]^{-} + RH$ #### **Conclusions** - 1. Active and Selective Fe/MFI Catalysts with Fe/Al = 1/1 can be prepared by Sublimation. - 2. With iso- C_4 as reductant and GHSV = 42, 000 h⁻¹ these catalysts give high SCR yield at 350°C. - 3. Water vapor in the feed *increases* SCR activity below 350°C. - 4. Reaction mechanism includes oxidation steps $(NO = > NO_2)$ and reduction steps $(-NO_2 = > -NH_2)$. - 5. Fe/MFI(SUB) Catalysts are even more active with NH₃ as the reductant. #### Articles published - "Reduction of NO_x over Fe/ZSM-5 Catalysts: Mechanistic Causes of Activity Differences between Alkanes" Hai-Ying Chen, Timur Voskoboinikov and Wolfgang M. H. Sachtler Catalysis Today <u>54</u> 483-494 (**1999**) - 2 "Reaction intermediates in the SCR of NO_x over Fe/ZSM-5" H.Y. Chen, T. Voskoboi-nikov and W.M.H. Sachtler, *J. Catal.* (1999) 186 91 - Introduction of Zn, Ga and Fe into HZSM-5 cavities by sublimation; Identification of catalytic sites" El M. El Malki, R. A. van Santen and W. M.H. Sachtler, *J.Phys. Chem.* B, 103 4611-4622 (1999) - 4 "Characterization of Fe/ZSM-5 by Isotopic Exchange with ¹⁸O₂"; Tim V. Voskoboinikov, Hai-Ying Chen and Wolfgang M.H. Sachtler, *J. Molec. Catal.* <u>A</u> 155 (2000) 155-168 - "Isothermal Oscillations of N₂O Decomposition over Fe/ZSM-5 Catalysts; Effect of H₂O vapor" El M. El Malki, R. A. van Santen and W. M.H. Sachtler, *Microporous and Mesoporous Materials*, <u>35-36</u> (**2000**) 235-244. - 6 "Reduction of NO_x over various Fe/zeolite catalysts" Hai-Ying Chen, Xiang Wang and Wolfgang M.H. Sachtler *Appl Cat A*, (General): 194-195 159-168 (2000) - "Catalytic Reduction of NO_x by Hydrocarbons over Co/ZSM-5 Catalysts Prepared with Different Methods" Xiang Wang, Hai-Ying Chen, W. M. H. Sachtler *Appl. Catal.* B *Environmental* <u>26</u> (2000) L227-L239 - Was a "Active Sites in Fe/MFI Catalysts for NO_x Reduction and Oscillating N₂O Decomposition" El-M. El-Mekki, R.A. van Santen and W.M.H. Sachtler, J. Catal. 196 (2000)212-223 - "Reduction of NO_x over Zeolite MFI Supported Iron Catalysts: Nature of Active Sites" Hai-Ying Chen, Xiang Wang and Wolfgang M. H. Sachtler*. *Physical Chemistry, Chemical Physics*. 2 (2000) 3083-3090 - "Coordination of Co²⁺ Cations inside Cavities of Zeolite MFI with Lattice Oxygen and Adsorbed Ligands" El-M. El-Malki, David Werst, Peter E. Doan, and W.M.H. Sachtler J. *Phys Chem.* .B **2000** <u>104</u>, 5924-5931 - 11. "Identification of Active Sites and Adsorption Complexes in Fe/MFI Catalysts for NO_x Reduction" Hai-Ying Chen, El-Mekki El-Malki, Xiang Wang and Wolfgang M. H. Sachtler *J. Molec. Catal.* A: Chemical **2000**, <u>162</u>:1-2:159-174. - "Selective Reduction of NO_x with Hydrocarbons over Co/MFI Prepared by Sublimation of CoBr₂ and Other Methods" Xiang Wang, Haiying Chen and W. M. H. Sachtler, *Appl. Catal. B. Environmental* 19 (2000) 47-60. - "Mechanism of the Selective Reduction of NO_x over Co/MFI: Comparison with Fe/MFI" Shawn Wang, H.Y. Chen, Wolfgang Sachtler; *J. Catal.* 197 281-291 (2001) - "Mono- and Multinuclear Oxo-Cations in Zeolite Cavities" Hai-Ying Chen, El M. El Malki, Xiang Wang and Wolfgang M.H. Sachtler, in "Catalysis by Unique Metal Ion Structures in Solid Matrices; From Science to Application" pp. 75-84; G. Centi B. Wichterlová, A.T. Bell Eds. (2001 NATO Science Series II Mathematics, Physics and Chemistry Vol 13, Kluwer Academic Publishers, Dordrecht, The Netherlands (2001) - "Reduction of NO_x with Ammonia over Fe/MFI: Reaction Mechanism Based on Isotopic Labeling" Qi Sun, ZhiXian Gao, Hai-Ying Chen and Wolfgang M. H. Sachtler; *J. Catal.* 201 (2001) 89-99 - "UV-Raman characterization of Iron peroxo adsorbates on Fe/MFI catalyst with high activity for NOx reduction" Zhi-Xian Gao, Hack-Sung Kim, Qi Sun, Peter C. Stair and Wolfgang M.H. Sachtler, *J. Phys. Chem. B* 105 6186-6190 (2001) - "Function of Pdon Clusters, Pdon' (oxo-) ions and PdO Clusters in the Catalytic Reduction of NO with Methane over Pd/MFI Catalysts" B. Wen, Q. Sun and W.MH Sachtler J. Catal. 204 314-323 (2001) - 18 "H/D Exchange of methane over Transition metal/MFI catalysts" B. Wen, Q. Sun and W.M.H. Sachtler; *Appl. Catal.* <u>A 229 (1)</u> (2002) 11-22 - "H/D Exchange of methane over Transition metal/MFI catalysts" B. Wen, Q. Sun and W.M.H. Sachtler; *Appl. Catal.* A 229 (1) (2002) 11-22 (paper for special issue of *Appl. Catal.* dedicated to L. Guczi) - 20 "Synergism of Cobalt and Palladium in MFI Zeolites of Relevance to NO_x Reduction with Methane"B. Wen, W.M.H. Sachtler, Phys. Chem. Chem. Phys., 2002, 4, 1983 - 1989 - "Identification of Highly Active Iron Sites in N₂O-Activated Fe/MFI": J. Jia, Q. Sun, B. Wen, W M.H. Sachtler *Cat Lett* (subm) - "Spectroscopic Evidence for a Nitrite Intermediate in the Catalytic Reduction of NO_x with Ammonia on Fe/MFI" Qi Sun, Zhi-Xian Gao, Bin Wen and Wolfgang M. H. Sachtler *Cat. Lett.*. (In press) - 23 "Characterization by EXAFS of Co/MFI Catalysts Prepared by Sublimation" V. Schwartz, R. Prins, X. Wang, W.M.H. Sachtler J. phys Chem. subm. - "Chemical Anchoring of Palladium by Fe-oxo ions in Zeolite ZSM-5" Bin Wen, Jifei Jia, Wolfgang. M. H. Sachtler (subm.)