EXHAUST AFTERTREATMENT
IN THE FRAMEWORK OF SYSTEM ENGINEERING SIMULATION

Johann C. Wurzenberger, Sophie Bardubitzki (AVL List GmbH)
Roman Heinzle (Industrial Mathematics Competence Center, MathConsult GmbH)
Tomaž Katrašnik (University of Ljubljana)

15/06/2011
OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions
REQUIREMENTS ON SYSTEM ENGINEERING SIMULATION SUPPORTING AND CONCEPT DESIGN AND CALIBRATION

- **Multi-physical system simulation**
 - Dedicated models and solvers for all vehicle domains (engine, cooling, drivetrain, e-system)

- **Consistent plant modelling**
 - Links development teams from concept to calibration phase

- **Scalable physical modelling depth**
 - Right balance of predictability and CPU speed

- **Flexible model customization**
 - Best combination of standard and custom models

- **Open interface in office and HiL**
 - Office co-simulation platform and model export on all relevant HiL systems

- **From engineering to commercial tools**
 - Experience of powertrain engineering as input for tool development
MULTI-PHYSICS SYSTEM SIMULATION ENGINE, COOLING, VEHICLE AND CONTROL

- Cooling & Lubrication (dt~1000ms) Quasi-State/Transient Flow Transient Energy Balance
- Air Path, Control, Vehicle Drivetrain (dt~0.5-5ms)
- Aftertreatment (dt~arbitrary) Stiff systems
- Cylinder (dt~1degCRA, speed dependent)
CONSISTANT PLANT MODELING
SCALABLE PHYSICAL MODELING DEPTH

Modeling Approaches

- Map Based:
 (e.g. conv=f(Temp., [educt])
- Surrogate modeling:
 (multidimensional input space)
- Physical, transient 1D/3D two-phase model
- Physical, transient 1D/3D two-phase model including 1D reaction diffusion modeling in arbitrary washcoat layers

Figures taken from SAE _2012-01-1296
AVL User Coding Interface

- GUI Supported Custom Kinetics
 - Arbitrary Species
 - Arbitrary Reactions (conversion, surface storage, …)
- Automatic generation of c-code and compilation of reaction dll
- Encapsulated reaction modelling
- Combination of multiple user-dll with pre-defined reaction models
- Simplified Workflow (Application of one single reaction dll in BOOST, FIRE and CRUISE™)
FLEXIBLE MODEL CUSTOMIZATION EXAMPLE: UREA DECOMPOSITION APPROACH

Model 12 reactions

(R1) urea → NH4+ + NCO-
(R2) NH4+ → NH3(g) + H+
(R3) NCO- + H+ → HNCO(g)
F (R4) urea + NCO- + H+ → biuret
D (R5) biuret → urea + NCO- + H+
F (R6) biuret + NCO- + H+ → cyanuric acid + NH3(g)
D (R7) cyanuric acid → 3 NCO- + 3 H+
F (R8) cyanuric acid + NCO- + H+ → ammelide + CO2(g)
D (R9) ammelide → 2 NCO- + 2 H+ + HCN(g) + NH(g)
(R10) urea(aq) → NH4+ + NCO-
(R11) NCO- + H+ + H2O(aq) → NH3(g) + CO2(g)
F (R12) urea(aq) + NCO- + H+ → biuret

F: formation reaction
D: decomposition reaction

\[
\dot{r}' = A \cdot e^{\left(-\frac{T_A}{T_s} \right)} \cdot \prod_j \left(Z_j^N \cdot v_j \right) \cdot \Gamma / 1000 \cdot \left(\sum_k Z_k^{init} \cdot \sigma_k \right)^\nu \left(1 - \sum_j \nu_j \right)
\]

OPEN INTERFACE IN OFFICE APPLICATION

- **Flowmaster, Kuli**
- **AVL PUMA**
- **MATLAB/Simulink**
- **Car/TruckMaker**
- **LMS AMESim**
- **AVL VSM/Drive**
- **ETAS ASCET**
- **Car/TruckSim**
- **AST ACCI**
- **CUSTOM C-CODE**
- **FMI (Dymola, SimX...)**

CRUISE™:
Multi-Physics, Multi-Rate-Time-Integration
OPEN INTERFACE IN HIL APPLICATION
Mission compilation out of various sources

- Random-cycle generator: Compile random driving profile out from 20000 short trips
- In-Use data import: Load GPS (e.g. measured via M.O.V.E., NAVTEC)
- Legislation cycles: Selection of driving profile from built-in library
- Combine individual task to dedicated mission
OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions
2 Front wheel driven passenger cars:

1. Conventional 5 speed gear box
2. Parallel Hybrid of Toyota Prius 2004 (schematic)

Common configurations for
- Vehicle chassis, tires
- Driver…
- TGDI and ECU
ENGINE, AIR PATH AND CYLINDER MODEL

Engine
- 4-Cylinder GDI
- Waste-gate TC
- TWC

Controller
- Fuelling
- Boost pressure: Waste-gate and throttle controlled in open and closed loop
Model Characteristics:

- Air path (IM, EM, Walls, TC, Air Cleaner, Intercooler, Fuel Tank, Catalysts etc.) elements are described in **time domain** by
 1. Mean Value approach (this study)
 2. Filling/Emptying approach
- Cylinder, ports, wall heat transfer, injector, etc. are described in **crank angle domain**
 - Single zone during gas exchange
 - Two zone during high pressure phase
- Combustion is modeled by GCA derived maps for Vibe parameters
- Pollutant Formation is modeled by surrogates taking advantage of the crank resolved cylinder (in particular in-cylinder A/F ratio)
- Port and Cylinder heat losses following Zapf and Wimmer

Mass / Species Conservation

\[
\frac{dm}{d\xi} = \frac{dt}{d\xi} \left(\sum m_{\text{j},\text{air}} + \sum m_{\text{k},\text{ads}} + m_{\text{inj}} \right) \quad \frac{dm_i}{d\xi} = \frac{1}{m} \frac{dt}{d\xi} \left(\sum m_{\text{j},\text{air}} \cdot w_{n,i-1} \right) + \sum m_{\text{j},\text{inj}} \cdot w_{n,i} + \frac{dw_C}{d\xi},
\]

Energy Conservation

\[
\frac{dT}{d\xi} = \frac{B}{m} \left[(Q + \dot{H}) \cdot \frac{dt}{d\xi} + \left(K \cdot m - 1 \right) \cdot p \cdot \frac{dV}{d\xi} - (u + K \cdot T \cdot R \cdot m) \cdot \frac{dm}{d\xi} - m \cdot \left(K \cdot m \cdot T \cdot \frac{\partial R}{\partial w_n} + \frac{\partial u}{\partial w_n} \right) \cdot \frac{dw_n}{d\xi} \right]
\]
NO FORMATION

Model Characteristics:

- **Crank-Angle resolved (physical) NO formation**
 - Based on two zone model
 - Equilibrium approach for 12 species according to De Jaeger
 - Kinetic approach for NO formation according to Zeldovich
 - Initial NO level defined by system species balances (considering NO in EGR)

- **Surrogate (data driven) NO formation**
 - Applies maps, Support Vector Machines, NNs, ... populated based on experimental data or high-fidelity simulations
 - Embedded in crank-angle resolved or surrogate engine model
PASSIVE SCALAR TRANSPORT

Model Characteristics:

- Transport of arbitrary species throughout the entire air path without influencing the flow/energy field calculation
- Addition to classic and general species transport (enable a minimum of transport equations for pollutant formation and aftertreatment)
- Arbitrary link of passive species with in-cylinder pollutant formation models and catalyst conversion models
- Arbitrary link with user-defined pollutant formation models

\[
\begin{align*}
B \cdot \frac{d\Phi}{dt} &= + \sum \dot{F}_k \\
\Phi &= \begin{bmatrix} m \\ T \\ w_A \\ w_P \end{bmatrix} \\
\dot{F} &= \begin{bmatrix} \dot{m} \\ \dot{H} \\ \dot{W}_A \\ \dot{W}_P \end{bmatrix}
\end{align*}
\]
• Non-linear Reaction-Diffusion Problem:

\[0 = a_{\text{trans}} \cdot \beta_k \cdot (c_k^L - c_k^B) - \sum_i v_{i,k} \cdot \dot{r}_i(c_k^L, T_s) \]

• Transient Surface Storage Balance:

\[a_{\text{trans}} \cdot \Theta \cdot \partial_i Z_{S,j} = \sum_i v_{i,j} \cdot \dot{r}_i(Z_{S,j}, c_k^L, T) \]

• Transient Substrate Enthalpy Balance:

\[\rho_s \cdot c_p \cdot \partial_i T_s = \partial_z (\lambda_s \cdot \partial_z T_s) - a_{\text{trans}} \cdot \alpha_h \cdot (T_s - T_g) + \sum_i \Delta h_i \cdot \dot{r}_i(c_k^L, T) + \dot{Q}_{\text{ext}} \]
ENGINE PERFORMANCE CALIBRATION
ENGINE LOAD POINT VARIATION AT 3 ISO-SPEED LINES

Comparison of simulation and experiment at selected speeds

Figures taken from SAE _2012-01-0359

CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger
Light-Off Comparison:

- Model calibrations represent well given measurements at 3 AF-ratios

Figures taken from SAE _2012-01-0359
Result Discussion:

- Engine in HEV only runs in acceleration phases except first non-zero speed period
- HEV engine runs at higher BMEP → Higher efficiency and lower overall fuel consumption
- ICEV engine runs at low BMEP during steady-state cruising and consequently at low engine efficiencies
- HEV engine features higher effective work (integrated “positive” power) due to
 - Higher vehicle mass (~10%)
 - Efficiencies of energy transformation from mechanical to electrical and back
 - Regenerative breaking does not compensate the above energy losses
Result Discussion:

- Hybrid features significant fluctuations in exhaust mass flow and temperature
- Not fired engine pumps “cold” air and cools the catalyst (perfect control was not attempted)
- Both engines run in approximately the same lambda controlled excess air ratio window at slightly rich conditions
- Lean/rich fluctuations are buffered in the TWC by Cerium oxide
UDC SIMULATION: CONVENTIONAL VEHICLE VS. HEV ACCUMULATED ENGINE / TAILPIPE EMISSIONS

Result Discussion:

- Hybrid produces significant emission steps (due to higher load points and emission mass flows)
- Conventional vehicle features “continuous engine out emissions
- Hybrid shows shorter light-off time due to higher mass flows at the between 12s and 50s
- Conventional vehicle shows CO and HC tail pipe emissions between 150s and 200s caused by missing oxygen
- Overall conversion performance of both vehicle configurations shows no significant differences

Figures taken from SAE _2012-01-0359
OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions
ENGINE AND VEHICLE MODEL

System engineering model assembled out library elements

Engine
- 4-Cylinder HSDI Diesel
- Intercooler
- Cooled EGR
- VTG turbocharger
- DOC DPF SCR

Controller
- Boost pressure (VTG)
- EGR
- Fuelling and smoke limitation
- idle speed
- Urea dosing

Vehicle
- Front Wheel Passenger Car
- Manual 6 Speed Gear Box
- ASC
- Driver
CATALYST MODEL CALIBRATION

Catalyst Model Calibration:

- Comparison with experimental data
 - Rates approaches are reasonable
- Comparison with reference model
 - Allows modeling workflow of rate approaches

- **DOC:**
 - CO, HC. Voltz approach
 - NO: reversible power-law

- **SCR:**
 - NH3 ad/desorption
 - Standard/Fast/Slow SCR reaction
 - NH3 oxidation

Figures taken from EAEC 2011_A32 | Valencia

CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger
NEDC COLD START SIMULATION BASE LINE MODEL

NEDC with Engine Base Calibration:

- NO emissions are calculated according to Zeldovich, NO2 is estimated
- CO2, H2O, O2 N2 are calculated based on equilibrium assumption
- DPF is assumed to be non-catalytic and therefore a pure thermal inertia
- Urea-dosing control is set to provide NH3/NO ratio of 1.05

- Model matches measured data with reasonable accuracy

Figures taken from EAEC 2011_A32 | Valencia
NEDC with Modified Engine Calibration:

- EGR variation shows increasing NO emissions with decreased EGR due to higher combustion temperatures and higher O2 concentrations
- Lower EGR (0.9) shows stronger tailpipe emission deviation from base case than higher EGR (1.1)
- SOC variation show increasing NO emissions with earlier SOC due to higher combustion temperatures
- Earlier SOC (-10degCRA) shows more pronounced deviation in NO emissions that late SOC (+10degCRA)
- Earlier SOC and therefore lower engine out temperatures do additionally deteriorate the DeNOx performance in the exhaust line
OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions
SUMMARY AND CONCLUSIONS

- A system engineering simulation model is presented covering the areas vehicle (1), engine (2) and cooling (3) and control (4)
- Dedicated numerical techniques are applied to ensure fast (RT) running models
- The models are configured out of standard and custom components
- System engineering simulation is a promising approach to address current and future challenges in the area of
 - In-use emission compliance
 - HiL based function calibration