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REQUIREMENTS ON SYSTEM ENGINEERING 
SIMULATION SUPPORTING AND CONCEPT DESIGN 
AND CALIBRATION

� Multi-physical system simulation
� Dedicated models and solvers for all 

vehicle domains (engine, cooling, drivetrain, e-

system)

� Consistent plant modelling 
� Links development teams from concept to 

calibration phase

� Scalable physical modelling depth
� Right balance of predictability and CPU 

speed

� Flexible model customization
� Best combination of standard and custom 

models

� Open interface in office and HiL
� Office co-simulation platform and model 

export on all relevant HiL systems

� From engineering to commercial 

tools
� Experience of powertrain engineering as 

input for tool development



4CLEERS 2013  | University of Michigan | April 2013 | J.C. Wurzenberger

MULTI-PHYSICS SYSTEM SIMULATION
ENGINE, COOLING, VEHICLE AND CONTROL

Cooling & Lubrication 

(dt~1000ms)

Quasi-State/Transient Flow

Transient Energy Balance

Air Path, Control, 

Vehicle 

Drivetrain

(dt~0.5-5ms)

Electric

Quasi-State

Aftertreatment 

(dt~arbitrary)

Stiff systems

Cylinder 

(dt~1degCRA, 

speed dependent)
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CONSISTANT PLANT MODELING
SCALABLE PHYSICAL MODELING DEPTH

Convection, 

Diffusion, Conduction
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Modeling Approaches

� Map Based:

(e.g. conv=f(Temp., [educt])

� Surrogate modeling: 

(multidimensional input space)

� Physical, transient 1D/3D two-

phase model

� Physical, transient 1D/3D two-

phase model including 1D 

reaction diffusion modeling in 

arbitrary washcoat layers

Figures taken from SAE _2012-01-1296
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� GUI Supported Custom Kinetics

� Arbitrary Species

� Arbitrary Reactions (conversion, 

surface storage,…)

� Automatic generation of c-code and 

compilation of reaction dll

� Encapsulated reaction modelling

� Combination of multiple user-dll with pre-

defined reaction models

� Simplified Workflow

(Application of one single reaction dll in 

BOOST, FIRE and CRUISEM)

FLEXIBLE MODEL CUSTOMIZATION
GRAPHICALLY SUPPORTED REACTION DESIGN

AVL User Coding Interface
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Model

(R1) urea → NH4+ + NCO-

(R2) NH4+ → NH3(g) + H+

(R3) NCO- + H+ → HNCO(g)

(R4) urea + NCO- + H+ → biuret

(R5) biuret → urea + NCO- + H+

(R6) biuret + NCO- + H+ → cyanuric acid + NH3(g)

(R7) cyanuric acid → 3 NCO- + 3 H+

(R8) cyanuric acid + NCO- + H+ → ammelide + CO2(g)

(R9) ammelide → 2 NCO- + 2 H+ + HCN(g) + NH(g)

(R10) urea(aq) → NH4+ + NCO-

(R11) NCO- + H+ + H2O(aq) → NH3(g)+ CO2(g)

(R12) urea(aq) + NCO- + H+ → biuret

12 reactions

F

F

F
D

D

D

F

F: formation reaction
D: decomposition reaction

urea 

CH4N2O
biuret

C2H5N3O2

cyanuric acid

C3H3N3O3

ammelide

C3H4N4O2

FLEXIBLE MODEL CUSTOMIZATION
EXAMPLE: UREA DECOMPOSITION APPROACH
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Ebrahimian, V.: “Development of multi-component evaporation models and 3D modeling of NOx-SCR reduction 

system”, PhD thesis, L‘Universitè de Toulouse, 2011 
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MATLAB/SimulinkFlowmaster, Kuli

Car/TruckSim

AVL VSM/DriveLMS AMESim

FMI (Dymola,SimX…)

ETAS ASCET

AST ACCI

Car/TruckMakerAVL PUMA

CRUISEM:
Multi-Physics, 

Multi-Rate-Time-Integration

CUSTOM C-CODE

OPEN INTERFACE IN OFFICE APPLICATION
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OPEN INTERFACE IN HIL APPLICATION

InMotionInMotion

Car/TruckMakerCar/TruckMaker
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Mission compilation out of various 

sources

� Radom-cycle generator:

Compile random driving profile 
out from 20000 short trips

� In-Use data import: 
Load GPS (e.g. measured via 

M.O.V.E., NAVTEC)

� Legislation cycles:
Selection of driving profile from 

built-in library

� Combine individual task to 

dedicated mission

Mission Model

Emission

Random Cycle Generator

M.O.V.E.

Legislation Cycle

REAL-LIFE EMISSIONS IN OFFICE SIMULATION
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VEHICLE, ENGINE AND CONTROL

2 Front wheel driven passenger cars:

1. Conventional 5 speed gear box

2. Parallel Hybrid of Toyota Prius 2004 

(schematic) 

Common configurations for

� Vehicle chassis, tires

� Driver…  

� TGDI and ECU
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ENGINE, AIR PATH AND CYLINDER MODEL

Engine

� 4-Cylinder GDI

� Waste-gate TC

� TWC

Controller

� Fuelling

� Boost pressure: Waste-gate and 

throttle controlled in open and 

closed loop
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CYLINDER, COMBUSTION AND POLLUTANT 
FORMATION

Model Characteristics:

� Air path (IM, EM, Walls, TC, Air Cleaner, 

Intercooler, Fuel Tank, Catalysts etc.) 

elements are descripted in time domain by

1. Mean Value approach (this study)

2. Filling/Emptying approach

� Cylinder, ports, wall heat transfer, injector, 

etc. are described in crank angle domain

� Single zone during gas exchange

� Two zone during high pressure phase

� Combustion is modeled by GCA derived 

maps for Vibe parameters

� Pollutant Formation is modeled by 

surrogates taking advantage of the 

crank resolved cylinder (in particular in-

cylinder A/F ratio)

� Port and Cylinder heat losses following 

Zapf and Wimmer

Mass / Species Conservation

Energy Conservation
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NO FORMATION

Model Characteristics:

� Crank-Angle resolved (physical) NO formation

� Based on two zone model

� Equilibrium approach for 12 species 

according to De Jaeger

� Kinetic approach for NO formation 

according to Zeldovich

� Initial NO level defined by system species 

balances (considering NO in EGR)

� Surrogate (data driven) NO formation 

� Applies maps, Support Vector Machines,  

NNs, ... populated based on experimental 

data or high-fidelity simulations

� Embedded in crank-angle resolved or 

surrogate engine model
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PASSIVE SCALAR TRANSPORT

Model Characteristics:

� Transport of arbitrary species throughout the 

entire air path without influencing the 

flow/energy field calculation

� Addition to classic and general species 

transport (enable a minimum of transport 

equations for pollutant formation and 

aftertreatment)

� Arbitrary link of passive species with in-cylinder 

pollutant formation models and catalyst 

conversion models

� Arbitrary link with user-defined pollutant 

formation models∑+=⋅
k

d

d
F

Φ
Β &

t



















=

P

A

w

w
Φ

T

m



















=

P

A

W

W
F

&

&

&

&

&
H

m



17CLEERS 2013  | University of Michigan | April 2013 | J.C. Wurzenberger

Catalyst Solver

• Non-linear Reaction-Diffusion Problem:

• Transient Substrate Enthalpy Balance:
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• Transient Surface Storage Balance:

CATALYST AIR PATH BINDING

Gas Path Elemental Solver
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ENGINE PERFORMANCE CALIBRATION
ENGINE LOAD POINT VARIATION AT 3 ISO-SPEED LINES

Comparison of simulation 
and experiment at selected 
speeds

Figures taken from SAE _2012-01-0359
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TWC CALIBRATION

Light-Off Comparison:

� Model calibrations represents well given 

measurements at 3 AF-ratios
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UDC SIMULATION: CONVENTIONAL VEHICLE VS. HEV
PERFORMANCE AND FUEL CONSUMPTION
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Result Discussion:

� Engine in HEV only runs in acceleration 

phases except first non-zero speed 

period

� HEV engine runs at higher BMEP

� Higher efficiency and lower overall fuel 

consumption

� ICEV engine runs at low BMEP during 

steady-state cruising and consequently at 

low engine efficiencies

� HEV engine features higher effective 

work (integrated “positive” power) due to

� Higher vehicle mass (~10%)

� Efficiencies of energy transformation 

from mechanical to electrical and 

back

� Regenerative breaking does not 

compensate the above energy 

losses
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UDC SIMULATION: CONVENTIONAL VEHICLE VS. HEV
ENGINE OUT / TWC INLET 
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Result Discussion:

� Hybrid features significant fluctuations in 

exhaust mass flow and temperature

� Not fired engine pumps “cold” air and 

cools the catalyst (perfect control was not 

attempted)

� Both engines run in approximately the 

same lambda controlled excess air ratio 

window at slightly rich conditions 
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� Lean/rich fluctuations are 

buffered in the TWC by 

Cerium oxide

Figures taken from SAE _2012-01-0359
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UDC SIMULATION: CONVENTIONAL VEHICLE VS. HEV
ACCUMULATED ENGINE / TAILPIPE EMISSIONS
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Result Discussion:

� Hybrid produces significant emission 

steps (due to higher load points and 

emission mass flows)

� Conventional vehicle features “continuous 

engine out emissions

� Hybrid shows shorter light-off time due to 

higher mass flows at the between 12s 

and 50s

� Conventional vehicle shows CO and HC 

tail pipe emissions between 150s and 

200s caused by missing oxygen

� Overall conversion performance of both 

vehicle configurations shows no 

significant differences

Figures taken from SAE _2012-01-0359
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ENGINE AND VEHICLE MODEL

Engine

� 4-Cylinder HSDI Diesel

� Intercooler

� Cooled EGR

� VTG turbocharger

� DOC DPF SCR

Controller

� Boost pressure (VTG)

� EGR

� Fuelling and smoke 

limitation

� idle speed

� Urea dosing

Vehicle

� Front Wheel Passenger Car 

� Manual 6 Speed Gear Box

� ASC

� Driver

System engineering model assembled out library elements 
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CATALYST MODEL CALIBRATION

Catalyst Model Calibration:

� Comparison with experimental 

data

� Rates approaches are 

reasonable

� Comparison with reference model

� Allows modeling workflow of 

rate approaches

� DOC:

� CO, HC. Voltz approach 

� NO: reversible power-law

� SCR:

� NH3 ad/desorption

� Standard/Fast/Slow SCR

reaction

� NH3 oxidation

DOC SCR

Figures taken from EAEC 2011_A32 | Valencia 
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NEDC COLD START SIMULATION
BASE LINE MODEL

NEDC with Engine Base Calibration:

� NO emissions are calculated according 

to Zeldovich, NO2 is estimated 

� CO2, H2O, O2 N2 are calculated based 

on equilibrium assumption

� DPF is assumed to be non-catalytic and 

therefore a pure thermal inertia

� Urea-dosing control is set to provide 

NH3/NO ratio of 1.05

� Model matches measured data with 

reasonable accuracy

Figures taken from EAEC 2011_A32 | Valencia 
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NEDC COLD START SIMULATION
ENGINE CONTROL VARIATIONS

NEDC with Modified Engine Calibration:

� EGR variation shows increasing NO 

emissions with decreased EGR due to 

higher combustion temperatures and 

higher O2 concentrations

� Lower EGR (0.9 ) shows stronger tailpipe 

emission deviation from base case than 

higher EGR (1.1)

� SOC variation show increasing NO 

emissions with earlier SOC due to higher 

combustion temperatures

� Earlier SOC (-10degCRA) shows more 

pronounced deviation in NO emissions 

that late SOC (+10degCRA)

� Earlier SOC and therefore lower engine 

out temperatures do additionally 

deteriorate the DeNOx performance in 

the exhaust line
Figures taken from EAEC 2011_A32 | Valencia 
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� A system engineering simulation model 
is presented covering the areas vehicle 
(1), engine (2) and cooling (3) and 
control (4)

� Dedicated numerical techniques are 
applied to ensure fast (RT) running
models

� The models are configured out of 
standard and custom components

� System engineering simulation is a 
promising approach to address current 
and future challenges in the area of

� In-use emission compliance

� HiL based function calibration 

SUMMARY AND CONCLUSIONS


