

EXHAUST AFTERTREATMENT IN THE FRAMEWORK OF SYSTEM ENGINEERING SIMULATION

Johann C. Wurzenberger, Sophie Bardubitzki (AVL List GmbH) Roman Heinzle (Industrial Mathematics Competence Center, MathConsult GmbH) Tomaž Katrašnik (University of Ljubljana)

15/06/2011

OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions

REQUIREMENTS ON SYSTEM ENGINEERING SIMULATION SUPPORTING AND CONCEPT DESIGN AND CALIBRATION

Multi-physical system simulation

 \rightarrow Dedicated models and solvers for all vehicle domains (engine, cooling, drivetrain, e-system)

Consistent plant modelling

 \rightarrow Links development teams from concept to calibration phase

Scalable physical modelling depth → Right balance of predictability and CPU speed

Flexible model customization
 → Best combination of standard and custom models

Open interface in office and HiL → Office co-simulation platform and model export on all relevant HiL systems

From engineering to commercial tools

 \rightarrow Experience of powertrain engineering as input for tool development

MULTI-PHYSICS SYSTEM SIMULATION ENGINE, COOLING, VEHICLE AND CONTROL

CONSISTANT PLANT MODELING SCALABLE PHYSICAL MODELING DEPTH

Modeling Approaches

- Map Based: (e.g. conv=f(Temp., [educt])
- Surrogate modeling: (multidimensional input space)
- Physical, transient 1D/3D twophase model
- Physical, transient 1D/3D twophase model including 1D reaction diffusion modeling in arbitrary washcoat layers

Y=1.000

Modeling Depth

Figures taken from SAE _2012-01-1296 CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger

FLEXIBLE MODEL CUSTOMIZATION GRAPHICALLY SUPPORTED REACTION DESIGN

ile t	Edit Help							AVL #
	🖻 🖬 😭 🤊	- 0	1 *					
Catalyst SCR Reaction Model			Name Comment		NH3 Ad	d/Desorption		
					New Reaction			
~	Surface Sites		Publis	sh Comm	ent			
	Cu-Zeolite			n. n.				
Ť	NU2 Ad/Decombion		-		Nam	e	Stoic	hiometry
	Standard SCP		1	Cu-Ze	olite: Me		0.010	1
Standard SCR			2	Cu-Ze	Cu-Zeolite: Me-NH3		1	
	Past SUR		3	NH3				1
	NH3 Ovidation							
	N2O Exemption							
	Nitrat Formation		Row 1 of	3, column	1 of 2			
	Globals		Set Heat of Reaction					
	Model Parameters		Set Heat of	of Reactio	n O			J / kmol
Þ	I NT Reaction Model		- 1	G G			_	
Þ	DOC Reaction Model			Para	meter	Value	Publish	Label
Ĩ	2 C S I COULON MODEL	1	1	К		1000000	V	K_NH3_AdDe
		~	2	E		7000	V	E_NH3_AdDes
				-				
			Row 1 of	2, column	1 of 4			
			Declaratio	on	double	K;		
					double E; double rate			
					uouoie			
			Code		rate= K * exp (-E/Ts) * z_Me * z_NH3;			

AVL User Coding Interface

- GUI Supported Custom Kinetics
 - Arbitrary Species
 - Arbitrary Reactions (conversion, surface storage,...)
- Automatic generation of c-code and compilation of reaction dll
- Encapsulated reaction modelling
- Combination of multiple user-dll with predefined reaction models
- Simplified Workflow (Application of one single reaction dll in BOOST, FIRE and CRUISE^M)

Ebrahimian, V.: "Development of multi-component evaporation models and 3D modeling of NOx-SCR reduction system", PhD thesis, L'Universitè de Toulouse, 2011

CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger

OPEN INTERFACE IN OFFICE APPLICATION

OPEN INTERFACE IN HIL APPLICATION

REAL-LIFE EMISSIONS IN OFFICE SIMULATION

Mission compilation out of various sources

- Radom-cycle generator: Compile random driving profile out from 20000 short trips
- In-Use data import: Load GPS (e.g. measured via M.O.V.E., NAVTEC)
- Legislation cycles: Selection of driving profile from built-in library
- Combine individual task to dedicated mission

OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions

VEHICLE, ENGINE AND CONTROL

2 Front wheel driven passenger cars:

- 1. Conventional 5 speed gear box
- 2. Parallel Hybrid of Toyota Prius 2004 (schematic)

Common configurations for

- Vehicle chassis, tires
- Driver...
- TGDI and ECU

ENGINE, AIR PATH AND CYLINDER MODEL

Engine

- 4-Cylinder GDI
- Waste-gate TC
- TWC

Controller

- Fuelling
- Boost pressure: Waste-gate and throttle controlled in open and closed loop

CYLINDER, COMBUSTION AND POLLUTANT FORMATION

 $\begin{aligned} & \text{Mass / Species Conservation} \\ & \frac{dm}{d\xi} = \frac{dt}{d\xi} \cdot \left(\sum \dot{m}_{j,\text{us}} + \sum \dot{m}_{k,\text{ds}} + \dot{m}_{\text{inj}} \right) \frac{dw_n}{d\xi} = \frac{1}{m} \cdot \frac{dt}{d\xi} \cdot \left(\sum \dot{m}_{j,\text{us}} \cdot w_{n,i-1} + \sum \dot{m}_{j,\text{us}} \cdot w_{n,i} \right) \\ & + \sum \dot{m}_{j,\text{us}} \cdot w_{n,i} \right) \\ & + m_{\text{inj}} \cdot w_{\text{inj}}, + \frac{dw_C}{d\xi} \\ & + (K \cdot m - 1) \cdot p \cdot \frac{dV}{d\xi} \\ & - (u + K \cdot T \cdot R \cdot m) \cdot \frac{dm}{d\xi} \\ & - m \cdot \left(K \cdot m \cdot T \cdot \frac{\partial R}{\partial w_n} + \frac{\partial u}{\partial w_n} \right) \cdot \frac{dw_n}{d\xi} \end{aligned}$

Model Characteristics:

- Air path (IM, EM, Walls, TC, Air Cleaner, Intercooler, Fuel Tank, Catalysts etc.) elements are descripted in time domain by
 - 1. Mean Value approach (this study)
 - 2. Filling/Emptying approach
- Cylinder, ports, wall heat transfer, injector, etc. are described in crank angle domain
 - Single zone during gas exchange
 - Two zone during high pressure phase
 - Combustion is modeled by GCA derived maps for Vibe parameters
 - Pollutant Formation is modeled by surrogates taking advantage of the crank resolved cylinder (in particular incylinder A/F ratio)
 - Port and Cylinder heat losses following Zapf and Wimmer

NO FORMATION

He 2: EGR	Cooler Solid Wall 5		GM 11: Rail P	ressure
Po 1: Intake_Port	haft 2 chanical Consumer 1		UD 1: NOX_M	odel
Pu 2: Exhaust_Port Data	Bus Channels	_		X
Po 2: Enhaust_Port Data	Bus Channels	Description	Unit Group	Unit
Po 2: Exhaust_Port Data	Bus Channels	Description	Unit Group	Unit
Po 2: Exhaust Port	Bus Channels	Description speed T_IM	Unit Group Angular Velocity Temperature	Unit rpm deqC
Fig.2: Exhaust Port	Bus Channels	Description speed T_IM AFr	Unit Group Angular Velocity Temperature Ratio	Unit rpm degC f
Fu 2: Exhaust_Port Fu 2: Exhaust_Port SW 7: E_Port Mass Flow 1 HT 9: E_port_HT 4	Bus Channels Deta Bus Channel INPUT0 INPUT1 INPUT2 INPUT3	Description speed T_IM AFr Rail_Pr	Unit Group Angular Velocity Temperature Ratio Pressure	Unit rpm degC [r] bar
Fo 2: Exhaust Port Fo 2: Exhaust Port SW 7: E Port Mass Flow 1 HT 9: E_port_HT 4 5	Bus Channels Data Bus Channel INPUT0 INPUT1 INPUT2 INPUT3 INPUT4	Description speed T_IM AFr Rail_Pr MFB50	Unit Group Anguler Velocity Temperature Ratio Pressure Angle	Unit rpm degC [·] bor deg
Fo 2: Exhaust Port SW 7: E Port Mass Flow 1 HT 9: E port_HT 6 6	Deta Bus Channels	Description speed T_IM AFr Roil_Pr MF850 EGR	Unit Group Angular Velocity Temperature Ratio Pressure Angle Ratio	Unit rpm degC [r] bor deg [r] [r]
Fo 2: Exhaust Port	Bus Channels	Description speed T_JM AFr RaiLPr MFB50 EGR BSFC	Unit Group Angular Velocity Temperature Ratio Pressure Angle Ratio Specific Massifow	Unit rpm degC () bar deg () () () () () () () () () ()
Fi 2: Exhaust Port Fi 2: Exhaust Port SW 7: E Port HT 9: E_port_HT 8	Bus Channels Data Bus Channel INPUT0 INPUT1 INPUT2 INPUT3 INPUT4 INPUT5 INPUT6 INPUT7	Description speed T_JM AFr RaiLPr MrB50 EGR BSFC AFrSt	Unit Group Anguler Velocity Temperature Ratio Pressure Angle Ratio Specific Massilow Ratio	Unit rpm degC [c] bar deg [c] [c] [c] [c] [c] [c] [c] [c]

Model Characteristics:

Crank-Angle resolved (physical) NO formation

- Based on two zone model
- Equilibrium approach for 12 species according to De Jaeger
- Kinetic approach for NO formation according to Zeldovich
- Initial NO level defined by system species balances (considering NO in EGR)

Surrogate (data driven) NO formation

- Applies maps, Support Vector Machines, NNs, ... populated based on experimental data or high-fidelity simulations
- Embedded in crank-angle resolved or surrogate engine model

PASSIVE SCALAR TRANSPORT

Model Characteristics:

- Transport of arbitrary species throughout the entire air path without influencing the flow/energy field calculation
- Addition to classic and general species transport (enable a minimum of transport equations for pollutant formation and aftertreatment)
- Arbitrary link of passive species with in-cylinder pollutant formation models and catalyst conversion models
- Arbitrary link with user-defined pollutant formation models

CATALYST AIR PATH BINDING

CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger

ENGINE PERFORMANCE CALIBRATION ENGINE LOAD POINT VARIATION AT 3 ISO-SPEED LINES

Figures taken from SAE _2012-01-0359 CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger

TWC CALIBRATION

Light-Off Comparison:

 Model calibrations represents well given measurements at 3 AF-ratios

Figures taken from SAE _2012-01-0359 CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger

UDC SIMULATION: CONVENTIONAL VEHICLE VS. HEV PERFORMANCE AND FUEL CONSUMPTION

Result Discussion:

- Engine in HEV only runs in acceleration phases except first non-zero speed period
- HEV engine runs at higher BMEP
 → Higher efficiency and lower overall fuel consumption
- ICEV engine runs at low BMEP during steady-state cruising and consequently at low engine efficiencies
- HEV engine features higher effective work (integrated "positive" power) due to
 - Higher vehicle mass (~10%)
 - Efficiencies of energy transformation from mechanical to electrical and back
 - Regenerative breaking does not compensate the above energy losses

Figures taken from SAE _2012-01-0359 CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger

UDC SIMULATION: CONVENTIONAL VEHICLE VS. HEV **ENGINE OUT / TWC INLET**

Result Discussion:

- Hybrid features significant fluctuations in exhaust mass flow and temperature
- Not fired engine pumps "cold" air and cools the catalyst (perfect control was not attempted)

Both engines run in approximately the same lambda controlled excess air ratio window at slightly rich conditions

> Lean/rich fluctuations are buffered in the TWC by Cerium oxide

Figures taken from SAE 2012-01-0359 CLEERS 2013 | University of Michigan | April 2013 | J.C. Wurzenberger

UDC SIMULATION: CONVENTIONAL VEHICLE VS. HEV ACCUMULATED ENGINE / TAILPIPE EMISSIONS

Result Discussion:

- Hybrid produces significant emission steps (due to higher load points and emission mass flows)
- Conventional vehicle features "continuous engine out emissions
- Hybrid shows shorter light-off time due to higher mass flows at the between 12s and 50s
- Conventional vehicle shows CO and HC tail pipe emissions between 150s and 200s caused by missing oxygen
- Overall conversion performance of both vehicle configurations shows no significant differences

OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions

15

Cockpit

Vehicle: Rear Right

016-

Rear Disc

ASC

ASC

ear Disc

Vehicle: Rear Le

Vehicle

Front DifftI

ENGINE AND VEHICLE MODEL

System engineering model assembled out library elements

Engine

- 4-Cylinder HSDI Diesel
- Intercooler
- Cooled EGR
- VTG turbocharger
- DOC DPF SCR

Controller

- Boost pressure (VTG)
- EGR
- Fuelling and smoke limitation
- idle speed
- Urea dosing

Vehicle

Front Wheel Passenger Car

Vehicle: Front Right

ront Disc

ront Disc

Vehicle: Front Left

FD

茸

MT-6

11 17-

 \Rightarrow

Clutch

- Manual 6 Speed Gear Box
- ASC
- Driver

CATALYST MODEL CALIBRATION

Catalyst Model Calibration:

 Comparison with experimental data

→ Rates approaches are reasonable

Comparison with reference model
 → Allows modeling workflow of rate approaches

DOC:

- CO, HC. Voltz approach
- NO: reversible power-law

SCR:

- NH3 ad/desorption
- Standard/Fast/Slow SCR reaction
- NH3 oxidation

NEDC COLD START SIMULATION BASE LINE MODEL

NEDC with Engine Base Calibration:

- NO emissions are calculated according to Zeldovich, NO2 is estimated
- CO2, H2O, O2 N2 are calculated based on equilibrium assumption
- DPF is assumed to be non-catalytic and therefore a pure thermal inertia
- Urea-dosing control is set to provide NH3/NO ratio of 1.05

 Model matches measured data with reasonable accuracy

NEDC COLD START SIMULATION ENGINE CONTROL VARIATIONS

NEDC with Modified Engine Calibration:

- EGR variation shows increasing NO emissions with decreased EGR due to higher combustion temperatures and higher O2 concentrations
- Lower EGR (0.9) shows stronger tailpipe emission deviation from base case than higher EGR (1.1)
- SOC variation show increasing NO emissions with earlier SOC due to higher combustion temperatures
- Earlier SOC (-10degCRA) shows more pronounced deviation in NO emissions that late SOC (+10degCRA)
- Earlier SOC and therefore lower engine out temperatures do additionally deteriorate the DeNOx performance in the exhaust line

OVERVIEW

- System Engineering Simulation
 - Requirements
 - Functionalities
- Simulation Examples
 - TGDI Engine in Hybrid Passenger Car
 - HSDI Diesel Engine in Conventional Passenger Car
- Summary/Conclusions

SUMMARY AND CONCLUSIONS

- A system engineering simulation model is presented covering the areas vehicle (1), engine (2) and cooling (3) and control (4)
- Dedicated numerical techniques are applied to ensure fast (RT) running models
- The models are configured out of standard and custom components
- System engineering simulation is a promising approach to address current and future challenges in the area of
 - In-use emission compliance
 - HiL based function calibration