

DPF Durability

Reggie Zhan

Southwest Research Institute

Cheng Li, Frank Mao Dow Automotive

DPF R&D and Application Roadmap

Component.

Performance

- Filtration Efficiency
- Pressure drop performance
- Thermal survivability
 - Normal thermal cycle
 - Thermal shock
- Loading and regeneration
- Catalyst efficiency

Durability

- Thermal aging
- Ash accumulation
- On-vehicle durability

Assembly

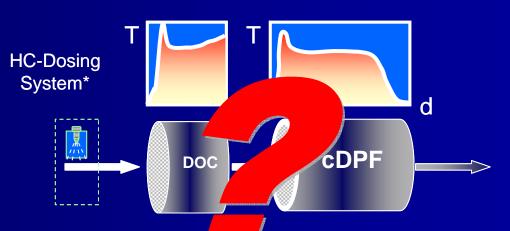
Validation

- Thermal & mechanical
 - "Vibration"
 - "Liquid spray"

Application

DPF Modeling

Control strategy


System

- Calibration
- OBD

DPF Integration Challenges – can modeling help?

How to determine DPF inlet soot rate?

How to predict DPF aging effect?

- Thermal aging
- cDPF poisoning
- Ash accumulation and effect

DPF Integration Challenge 1(1) – can modeling help?

- How to predict DPF soot loading level (g/L) to direct active DPF regeneration?
 - Build an ideal soot model:
 - Steady-state 3-D (RPM, Torque, EGR) maps
 - PM and SOF
 - $-NO_x$
 - Temperatures (DOC-in and DPF-in) "Existing (from calibration)"
 - Exhaust Flowrate

 $PM_{ss} = f (F, T, NOx, RPM, \tau, EGR)$ $SOF_{ss} = f (F, T, NOx, RPM, \tau, EGR)$

Engine-out

Estimate "transient PM rate" ("Driver variability")
 Most dominating factor! ("Cycle beat" may fail NTE limit)

 $PM_{T} = f(F, T, NOx, RPM, \tau, EGR, a/\Delta\tau)$ SOF_T = f(F, T, NOx, RPM, \tau, EGR, a/\Delta\tau)

Engine-out

DPF Integration Challenge 1(2) – can modeling help?
• Establish DOC efficiencies (SOF, NO-to-NO₂)

$$NOx_{DOC} = f(F, T, NOx, RPM, \tau, EGR, DOC)$$

 $SOF_{DOC} = f(F, T, NOx, RPM, \tau, EGR, DOC)$
 $PM_{DOC-out} = PM_{engine-out} - SOF_{DOC}$
• Establish DPF soot rate
 $PM_{passive} = f(F, T, RPM, \tau, EGR, DPF, NO_2-NOx/PM)$
 $PM_{DPE} = PM_{DOC-out} - PM_{passive}$

■ Integrate for DPF soot accumulation (SS and transient) $\Sigma PM = \Sigma PM_{ss-DPF} + \Sigma PM_{T-DPF}$

Target: < 1.0g/L error for LD!

DPF Integration Challenge 1(3) – can modeling help?

- Re-calibrate system for NO₂ compliance
 New regulation on NO₂ in California
- Controls to avoid runaway regenerations, handles incomplete regenerations (SAE 2006-01-1090)
- Build control layers for DPF active regenerations
 - Soot model (if reliable)
 - Fuel Consumption
 - Mileage
 - DPF pressure-drop (doesn't have good correlation to PM loading in real world)

more

Target: < 1.0g/L error for LD!

Challenge 2 – DPF Modeling

 How to incorporate DPF aging into model?
 - cDPF Thermal Aging – uncontrolled regeneration may not follow typical TWC thermal aging threshold (Arrhenius Rate Law)

 - cDPF Poisoning – lubricant poisoning and ash accumulated may affect DOC light-off and efficiency (e.g., passive regeneration), as well as cDPF efficiency (e.g., BPT)

 Need a realistic DF estimate at different vehicle mileage, with realistic estimate of uncontrolled regenerations and oil consumption.

Presentation Outline

- Why DPF Durability?
- Objectives
- Test Equipments and Procedures
- On-Engine Test
- On-Vehicle Test
- Test Results
- On-Engine Test Results
- On-Vehicle Test Results
- Summary

Why DPF Durability is Important?

DPF Needs to Survive Vehicle Lifetime

- For light-duty vehicles (e.g., passenger cars), DPF maintenance may not be considered during the entire vehicle lifetime.
- For heavy-duty vehicles, the maintenance interval may not be less than 150,000 miles during the 435,000 mileage of vehicle durability (Cost of cleaning)

DPF Durability and Survivability

- DPF regeneration
- On-vehicle DPF performance

Questions on DPF Durability Testing

How to test DPF thermal aging on an engine bench?

How to perform accelerated ash accumulation on DPF?

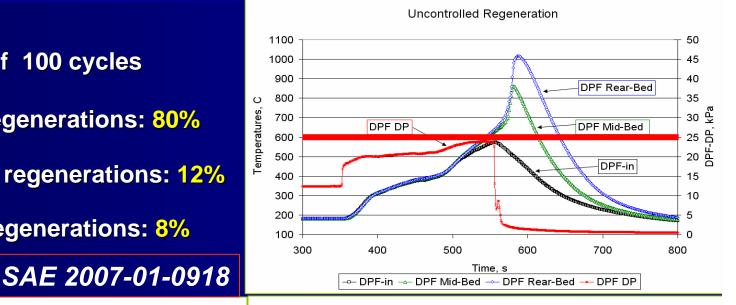
How to perform accelerated DPF durability test on a production vehicle?

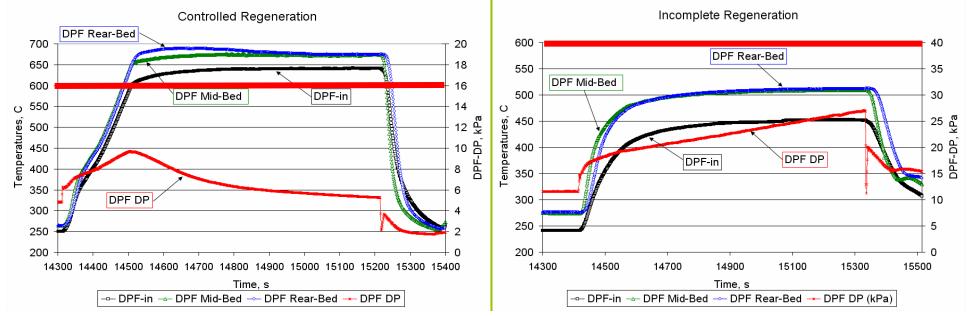
Objectives

 Develop an on-engine DPF aging procedure (LD application)

2. Optimize DPF design based on ash accumulation, and prove design concept on production vehicle

Logic – DPF Thermal Aging Cycle


- Soot loading has minimum thermal aging effect
- Controlled DPF regeneration has limited thermal aging effect (<750°C)</p>
 - 150-200 cycles for vehicle lifetime (optimized FE)
- Uncontrolled (runaway) regeneration has the largest impact on DPF thermal aging (850-1300°C)
 - Less than 5% in real-world statistics
 - Ways to avoid runaway regeneration being implemented
- Higher soot loading has added exothermal during regeneration (incomplete regeneration)



Test Equipments and Procedures (1) - on-engine test (continued)

Combination of 100 cycles

- Controlled regenerations: 80%
- Uncontrolled regenerations: 12%
- Incomplete regenerations: 8%

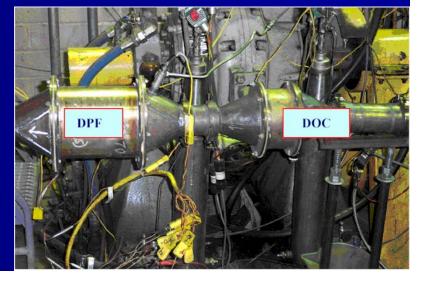
Test Equipments and Procedures (1)

- on-engine test

Engine: MY2002 PSA DW-10 2.0L, common-rail, waste-gated turbo, intercooler, EGR

DPF loading: Steady-state

DPF regeneration:


Test DPF: ACM[®] Race-track 200 cspi 3.0L 160mm X 125mm X 180mm (long)

In-exhaust fuel injection to DOC

Filtration eff. Measurement:

Duel partial-flow dilution system

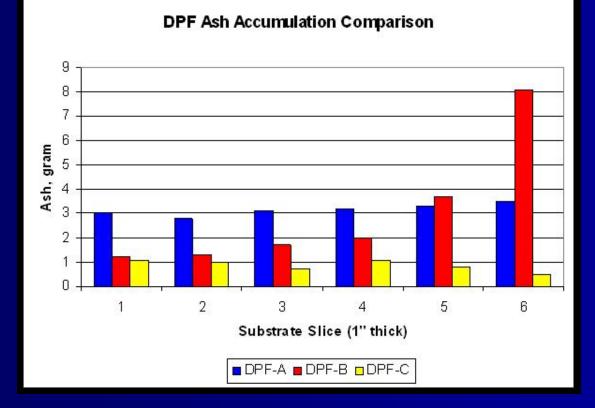
Test fuel: LSD (390ppm S)

No. of cycles: targeted 100

DPF Oil Poisoning and Ash Accumulation

Accelerated Oil Consumption:

- Oil blend with diesel fuel
- Oil injection to exhaust
- Oil injection to intake
- Increased oil leak through piston ring
- High ash oil



Need a realistic ash loading cycle!

DPF Oil Poisoning and Ash Accumulation

Substrate Structure Matters!

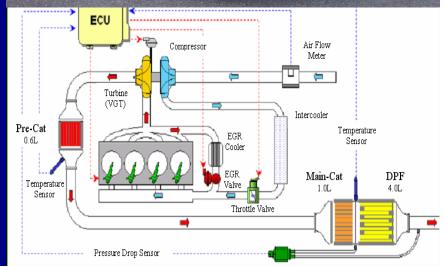
A realistic Ash Accumulation Cycle is critical!

Implication to DPF design and optimization

Test Equipments and Procedures (2) – on-vehicle test

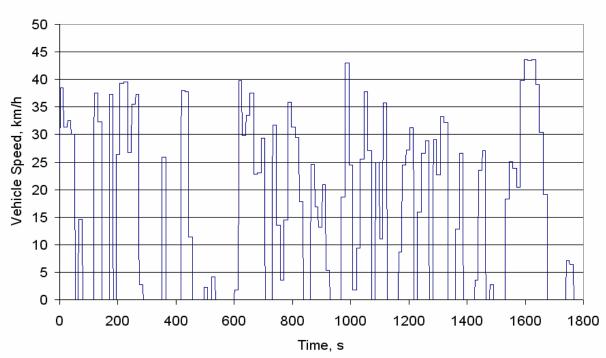
<u>Test vehicle:</u> MY2005 European diesel passenger car, Euro 4 certified

Engine: 1.9L CR, EGR, VGT


Aftertreatment:

0.6L pre-Cat (metallic)1.0L main-Cat (cordierite)4.0L SiC cDPF

DPF regeneration control: Stock ECU



Test Equipments and Procedures (2) – on-vehicle test (Continued)

DPF Loading Target

Over 20 grams total soot (4.0L OEM, 3.0L ACM)

Vehicle Driving Cycle for DPF Soot Loading

25% DPF volume reduction based on:(1) Ash accumulation and effect on pressure drop;(2) DPF thermal behavior

Presentation Outline

- Introduction
- Objectives
- Test Equipments and Procedures
- On-Engine Test
- On-Vehicle Test
- Test Results
- On-Engine Test Results
- On-Vehicle Test Results
- Summary

On-Engine Test Results

Regeneration Type	No. of Cycles
Controlled	82
Incomplete R	8
Uncontrolled	12
Total	102

Filtration Efficiency

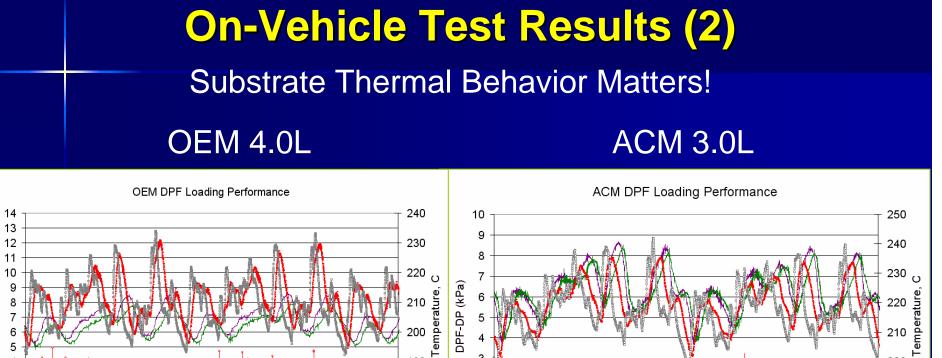
Cycle	Fil. Eff., wt. %
23A	98.4
24B	98.9
28A	93.5
29B	99.9
30B	95.1
35B	97.1
46A	99.0
46B	96.5
90B	99.0
101A	97.9
101B	93.5
102A	97.8

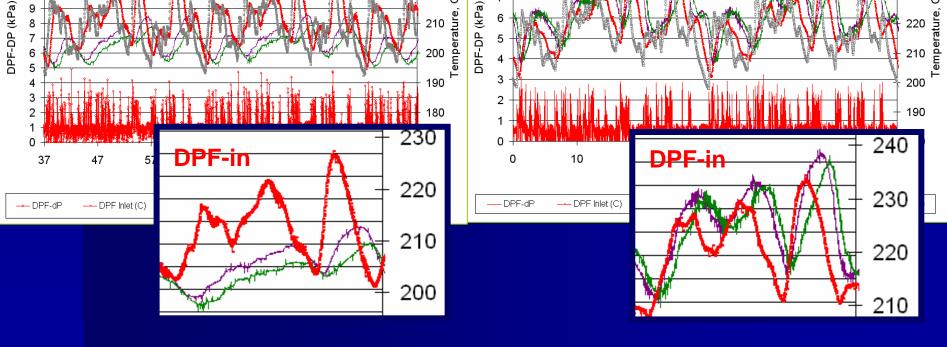
Peak DPF Temperature

Cycle	Peak Temp, °C
13	973
23	1075
24	1043
25	1109
32	1001
33	968
34	1032
35	940
43	1095
72	1052
85	1052
87	973

On-Vehicle Test Results

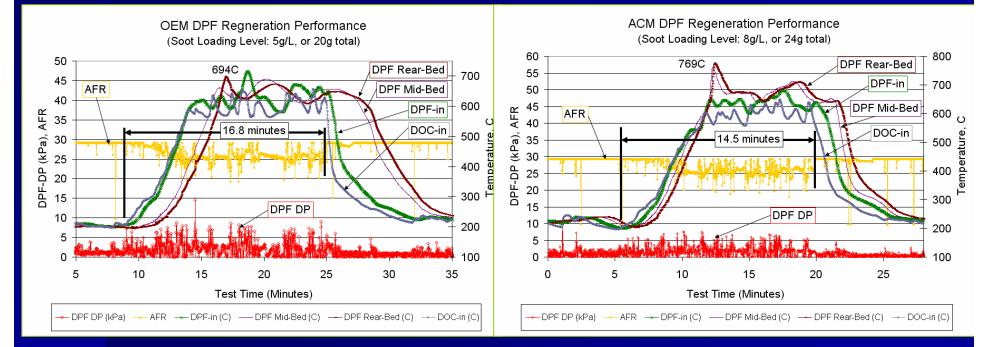
- **1. Pressure Drop Characteristics**
- 2. Soot Loading Performance
- **3. Regeneration Performance**
- 4. Accelerated On-Vehicle Durability Performance




On-Vehicle Test Results (1)

Pressure Drop Characteristics – OEM (4.0L) vs. ACM (3.0L)

DPF Pressure Drop Characteristics (OEM vs. ACM) OEM 5g/L, 20g total DPF Pressure Drop, kPa ACM 9g/L, 27g total ₽EM Clean ACM Clean Exhaust Flow Rate (kg/hr)



September in Texas

November in Texas

On-Vehicle Test Results (3)

Substrate Thermal Behavior Matters! SiC 4.0L ACM 3.0L

Take substrate thermal behavior into account for modeling

Presentation Outline

- Introduction
- Objectives
- Test Equipments and Procedures
- On-Engine Test
- On-Vehicle Test
- Test Results
- On-Engine Test Results
- On-Vehicle Test Results
- Summary

Summary

A DPF thermal aging cycle is developed

- 80% controlled
- 8% incomplete and
- 12% uncontrolled regenerations
- Ash accumulation may affect DPF design, on-vehicle test showed that by reducing 25% in volume, the ACM DPF had
 - Lower pressure drop
 - Higher filtration efficiency
 - Fast temperature response

Call for DPF aging modeling, on-engine and on-vehicle durability validation procedures exist

