Electron Microscopy of LNT Materials: Microstructural Changes with Aging

L.F. Allard and C.K. Narula

Metals and Ceramics Division Oak Ridge National Laboratory Oak Ridge, TN 37831

> CLEERS Workshop May 18, 2005 Dearborn, MI

Collaborators

ORNL:

Dr. Doug Blom Dr. Melanie Moses Ms. Dorothy Coffey

NTRC:

Dr. Stuart Daw Dr. Jim Parks

FRL:

Dr. George Graham Dr. John Hoard

UCalDavis:

Prof. Bruce Gates Mr. Vinesh Bhirud

Facilities/Instruments:

HF-2000 FE-TEM

Hitachi HD-2000 D-STEM

JEOL 8200 EMPA

Ex-situ reactor for TEM characterization of catalyst reactions

Tip of the Specimen Rod for the Catalyst Reactor System

Reactor in Position for Transfer of Specimen Rod to the HRTEM

Ex-situ catalyst reactor, based on tube furnace, for rapid cycling of gases to simulate lean-rich operation.

Samples studied:

- Supplier NOx traps: Fresh, Dyno Aged
- DISI fleet NOx traps: Fresh, 32K km and 83K km
- Umicore NOx traps: Fresh and de-greened
- Tri-rhenium carbonyl clusters on γ-Al₂O₃

Supplier NOx trap

TEM ion-milled thin specimen, showing double washcoat

Supplier NOx trap "Fresh"

Example of imaging and EDS analysis of catalyst microstructure

Alumina island with Pt/Rh particles in zirconia-ceria layer, in aged catalyst brick. Pt/Rh particles show large increase in size (40-50nm)

MICROSTRUCTURAL ANALYSIS OF SUPPLIER SAMPLES

Fresh

Aged

Fresh	Aged
Inner Layer	
Ba, AI O	Ba, Al, O
PGM – Pt can be observed in EDS, not seen in images	PGM – Pt, Pt-Rh 40-50 nm
Outer Layer	
Ce, Zr, O	Ce, Zr, O, Rh
Alumina Islands	Alumina Islands
BaO grains on Alumina	BaO in Alumina, Pt-Rh alloy in Alumina – 40-50 nm
Hint of Ba in Ceria-Zirconia laver	Ba in Ceria-Zirconia

Z-Contrast Microscopy

Atomic and electronic structure

U. S. DEPARTMENT OF ENERGY

Fresh

DISI LNT

ZC for spectrum image

Fresh Sum Spectrum

K-lines at ~16kev

Zr map

La peak

Ce Map

Al map

Ba map

Mostly bkgd?

Pt map

30K km sample (vehicle 112)

ZC for spectrum imaging

Sum spectrum

Al Map

From ROI on sum spectrum

Ba map

Ce Map

CeLa peak

15kV ZrKa

Zr map

Pt map

30Km sample (vehicle 112)

ZC for spectrum imaging

82K

Vehicle 240

Note bimodal distribution of Pt particles, partitioned betw oxide phases

Sum spectrum

Ce map

Zr Map

Ba map

Al Map

8-hr spectrum image

Pt Map

82K

Principal Component Analysis: Basically Pt, with some Ce and Zr

Microstructural Studies of Supplier NO_x Traps - Passenger Vehicle (DISI Fleet) Aging

 The analysis of on vehicle evaluated samples after 32K km and 80K km showed that the bulk of precious metal sintering occurred in the early stages of on vehicle aging

Umicore LNT Catalysts:

• Fresh

De-greened

Umicore GDI LNT fresh

BSE microprobe

BSE microprobe

04-3340 Umicore LNT fresh Oak Ridge National Laboratory U. S. Department of Energy

Umicore LNT fresh Ion-milled thin section

BF TEM

Area A Alumina-magnesia

Area B

Ce-Zr (primarily Ce)

U. S. DEPARTMENT OF ENERGY

E and F primarily Alumina, Pt also present (see next)

BF ACEM

(Remaining slides all ACEM)

ADF STEM ACEM

Mag series: 2

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

UT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

UT-BATTELLE

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Mag series: 5

Pt particles cannot be unambiguously located

BF ACEM

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Area for next image

Umicore LNT upstream

ADF ACEM

Pt particles clearly seen in bright contrast

Umicore de-greened, Pt particles 5-20nm in size

HD-2000 HA-ADF "Z-contrast" image

Tri-rhenium carbonyl clusters on γ-alumina

(Work with Prof. Bruce Gates and students, UCalDavis, and Drs. Melanie Moses and Chaitanya Narula, ORNL)

Noble Metal on Support: H₃Re₃(CO)₁₂/commercial γ-Al₂O₃ System

- H₃Re₃(CO)₁₂ was synthesized by literature methods and adsorbed on commercial γ– Al₂O₃ powder
- IR and EXAFS indicate that rhenium tricarbonyl clusters are present on the sample

BF STEM image of bare alumina

HA-ADF image of same area

Alumina with tri-rhenium carbonyl clusters deposited

BF STEM image of thin edge of alumina plate, with tri-rhenium clusters present.

HA-ADF STEM image of same area

Same area, after some time; note movement of atoms and clusters. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Final ADF image OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY

e

Front and side views of Re_3^{nm} cluster, tethered to a ledge parallel to the beam direction. Above trace is consistent with this cluster

OAK RIDGE NATIONAL LABORATORY Orientation. U. S. DEPARTMENT OF ENERGY

Decarbonylated Rhenium $[H_3Re_3(CO)_{12}]/Al_2O_3$ treated in H₂ at 400°C

JEOL 2200FS-AC "ACEM" 27 April 2005

Contains Nanoparticles

Magnification = 2 Mx

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Magnification = 5 Mx

<u>Re Atoms</u> <u>constantly moving</u>

DIRECTIONS:

Go To Slide show and scroll through consecutive images of the same area using the arrow keys

All at a magnification of 20Mx

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Re Atoms Cluster Growth

All at a magnification of 25Mx

Single Re atoms and Re clusters are present.

2

1

3

Crystal Growth Orientation along Alumina Lattice Planes

DIRECTIONS:

Go To Slide show and scroll through consecutive images of the same area using the arrow keys

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Magnification 20 Mx

The new JEOL 2200FS-AC aberration-corrected STEM/TEM, coupled with an excellent laboratory environment, offers great promise to provide "routine" sub-Å imaging capabilities.

Acknowledgement

Instrument funded by the Asst. Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle LLC for the U.S.Dept. of Energy under contract number DE-AC05-00OR22725

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

