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Zeolite catalysts for SCR of lean NOx

• Molecular sieves (ZSM-5, mordenite, Y-zeolite) used to 
promote specific reactions & achieve desired selectivity

• Alternatives to Vanadia based SCR catalysts but not as 
extensively studied (at least in open literature)

• useful for both hydrocarbon SCR or NH3 SCR
• Few commercial formulations (Engelhard, Johnson 

Matthey) available, more under development
– based mostly on metal-ion-exchanged ZSM-5



Zeolites vs. V2O5 based catalysts (1)

• Zeolites catalysts are less understood but seem to offer 
certain advantages (especially Fe-ZSM-5)
– Useful for both HC & NH3 SCR (Hwang, 1997; Ogura, 2000; Park, 

2000; Rebrov, 2000; Wang, 2000; Poignant, 2001; Neylon, 2004)
– Higher NOx reduction efficiency of NH3 SCR

• Fe-ZSM-5 is 5-7 times more active (resulting in near 100% conversion 
even at 4.6x105/hr SV)  than V2O5 catalyst in 400oC-450oC range based on 
first order global rates (Long*, 1999)

• Conversion is about twice on Cu-ZSM-5 compared to V2O5 in 150oC-
250oC range (Sullivan, 1995)

• NH3 oxidation on zeolites slightly higher but the product is N2 and not 
NOx (Sullivan, 1995; Qi, 2004 )

– Low hydrothermal stability and vulnerability to SO2 poisoning of 
Cu/Co-ZSM-5(Amiridis, 1996; Traa, 1999), Fe-ZSM-5 reported to be 
highly stable to 550°C-600oC(Feng,1997;Long,1999 )



Zeolites vs. V2O5 based catalysts (2)
– May have a broader temperature window (~250oC-600oC) for 

selectivity of NO SCR towards N2(Sullivan, 1995; Long, 1999)
• even if N2O forms, it may decompose (Rauscher, 1999; Coq, 2000)

(kinetics available for Cu-ZSM-5) or undergo SCR with both 
NH3(Mauvezin, 1999, Coq, 2000) and hydrocarbons(Pophal, 1997; Perez-
Ramirez, 2004)

• NO promotes N2O decomposition (above 350oC), but inhibits N2O SCR 
with hydrocarbons on Fe-zeolites (Perez-Ramirez, 2004)

• synergy between NO SCR and N2O SCR (Coq, 2000) with NH3 (has not 
been observed on V2O5 catalysts so far)

– NO2/NO = 1 is optimal for conversion in V2O5 catalysts
– SCR stoichiometry : α = NH3/NOx

• α= 1 when NO > NO2

• α > 1 when NO2 > NO
• NO2 SCR produces N2O which requires additional NH3 for reduction
• Additional NH3 consumed by direct oxidation



Zeolites vs. V2O5 based catalysts (3)
– Effect of H2O and  SO2

• substantially lower oxidation of SO2 to SO3 (Long, 1999)
• Fuel S content had no effect on Fe-ZSM-5 (Xu, 2002)
• SO2 reduces the Fe-ZSM-5 SCR activity slightly at low temperatures but  

enhances it at high temperatures  (> 350oC) in the presence of  H2O (Li, 
1999; Long*,1999; Long, 2000; Neylon, 2004). 

• Adverse effect of H2O was observed on metal-ZSM-5 in one study with 
protocol conditions for stationary power (Ramachandran, 2000)

– Hypothesis : SO2 forms sulfate ions and increases surface acidity
• increased SCR activity at high temperatures (Long*, 1999)
• these ions reduce NO oxidation which is rate limiting at low 

temperaratures
– Toxicity is a concern with V2O5 catalysts



Observations relevant to modeling (1)
• Mechanisms may be generic but calibration is needed for each 

catalyst sample
– NH3 oxidation depends on Si/Al ratio (10 is optimal(Long, 2001) for 

N2 selectivity), Fe/Al range of 0.19-0.43 optimal for NO SCR on Fe-
ZSM-5 (Long, 2000)

– Activity depends on precursors used in ion-exchange (FeCl3 is 
considered the best) (Delahay,2005; Yang, 2005)

– Sublimation/solid-state ion) & hydrocarbons (Cant,2000) (though the 
reactions following exchange better than aqueous exchange for low 
temperature performance (Delahay,2005; Yang, 2005)

• NO oxidation rate limiting for NO SCR at T < 350oC with both 
NH3 (Long, 2000; Stevenson, 2000; Long, 2001; Huang, 2002; 
Rahkamaa-Tolonen,2005) & HCs (Cant,2000) though the 
reactions that follow NO2 production are different)



Observations relevant to modeling (2)

• Metals oxidize NO on ZSM-5 catalysts
– HZSM-5 oxidizes NO but only in absence of NH3 (Stevenson, 

2000)
– Except for NO oxidation, metal-ZSM-5 catalysts have the same 

kinetics as HZSM-5 (Long,2000; Long,2002)
– NO & NO2 reach equilibrium around 350oC on metal-ZSM-5 

(typical SV), equilibrium is not reached even at 500oC on 
HZSM-5 (Long,2000)

– kinetics for HZSM-5 (Long,2002; Stevenson, 2002) catalysts 
can be used for Fe-ZSM-5 by adding NO-NO2 inter-conversion 
steps

• 1:1 ratio of NO:NO2 is optimal
– NO+NO2 > NO2 >> NO + O2

– (NH3/NOx)stoic > 1 when NO2 > 50%



SCR mechanisms
• NO SCR (Eng,1997; Long, 2000; Stevenson,2000; Long*, 2001) 

– NO + 1/2 O2 <=> NO2 (rate limiting step)
– NO2 + 2NH4

+ <=> (NH4
+) 2NO2

– (NH4
+)2NO2 + NO <=> 2N2 + 3H2O + 2H+ 

– With 50% NO & 50% NO2
• reactions 2 & 3 can proceed without reaction 1
• metal-ZSM-5 and HZSM-5 catalysts behave similarly

– 1:1 ratio of NH3:NO
– negligible N2O
– Models based on a global NO conversion rate have been 

developed(Komatsu, 1994; Eng, 1997; Stevenson, 2000; Huang, 2002)
• Ea : 35kJ/mol - 61 kJ/mol (~ 54kJ/mol in most cases)
• all but one study (Stevenson, 2000) ignored NH3 oxidation 
• mostly steady state experiments



SCR mechanisms
• NO2 SCR (Stevenson, 2002)

– (NH4
+)2NO2 + NO2 <=> N2 + N2O + 3H2O + 2H+ (~500-900 times faster 

than NO oxidation in 300oC-400oC range)
– N2O can participate in many likely reactions, e.g.,

• 3N2O + 2NH4
+ <=> 4N2 + 3H2O + 2H+

• N2O + NO2 <=> 3NO
– stoichiometry varies with T (and perhaps from one catalyst to 

another) from 1.2:1 - 2:1 (median:1.4-1.5)
– > 50% N2O selectivity (300oC-400oC) ! How ?
– modeling global NO2 conversion rate more difficult

• reaction orders change rapidly (order in [NH3] changes from 0.13 to 0.82 
in 300oC-350oC range)

– Conclusion : Modeling can become really complex when N2O starts to 
form (NO2>NO in the flow)



Kinetic models for NO SCR
• Global single step model : rNO = KNO [NO]x[NH3]y[O2]z

– ENO ~ 54 kJ/mol
– [x,y,z] :  

• [1,0,0.5] (Komatsu,1994)
• [0.73,-0.61,1.06] (Eng, 1997)
• [1,-0.45,1] (Stevenson, 2000)
• [0.9,-0.12,0.4] (Huang, 2002)

– y has negative values and varies most with temperature  

• Adsorbed NH3 inhibits NO oxidation : surface 
reactions model(Stevenson, 2000, Wallin,2003)
– rNO = KNO [NO][O2]0.5/{1 + Ka [NH3]}
– rOX = KOX Ka[NH3]/{1 + Ka[NH3]}, 

• EOX = 88kJ/mol(Long, 2001) , Ea = 19kJ/mol - 45 kJ/mol
– NH3 storage capacity is needed



Models for NO+NO2 SCR

• Separate out NO oxidation from SCR
– NO + 1/2 O2 <=> NO2

– NO2 + 2NH4
+ <=> (NH4

+)2NO2 (equilibrium)
– NO + (NH4

+)2NO2 <=> 2N2 + 3H2O + 2H+
– H+ + NH3 <=> NH4

+ (equilibrium)
– should work as long as NO > NO2 at inflow

• lot of other reactions involving N2O need to be added otherwise



Unresolved issues

• Urea to ammonia conversion on zeolites
– sprays : hydrodynamics, heat & mass transfer, uniformity
– No problem was reported with use of urea (Xu, 2002)
– Thermal pre-treatment needed for urea decomposition below 

250oC, formation of melamine suggested as a possibility (Jones, 
2004).

– Reactions involving species like HNCO and NOx need to be 
studied

• Model for self-inhibition of SCR at low T (< 250oC)
– NOx adsorption blocks NH3 adsorption (Xu, 2002)

• NOx storage : 0.02 - 0.05 mol/m3 (170oC-350oC range)
• NH3 adsorption at least 2 orders of magnitude higher
• how does NOx prevent NH4

+ formation despite the huge 
differences in propensities for storage
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