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Proven potential for NOx removal in fuel-lean diesel environments
a.k.a. : NOx Storage-Reduction (NSR) catalyst, NOx Adsorber Catalyst (NAC)
3-way catalyst + NOx storage material (alkali, alkaline-earth)
Cyclic operation: normal lean (storage)/short rich (release/reduction)

Lean Lean NONOxx Trap (LNT) CatalystTrap (LNT) Catalyst

NSR catalyst system is inherently transient and integral
Evaluation/understanding challenging
Need analytical tools with temporal and spatial resolution
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Improved understanding of LNT regeneration necessaryImproved understanding of LNT regeneration necessary

Having clear understanding of chemistry/kinetics is essential for fuel-
efficient LNT system implementation (model, LNT design, control)

For example, relative efficacy and interaction of different reductants

CO and H2 are major reductants from certain “in-cylinder” regeneration
CO and H2 similarly effective except low T
Low T performance: issue relevant to cold start, small engines
What’s the origin of similarity/difference of H2 and CO?

Objectives of this study
Compare efficiency of H2 and CO reductants
Determine origin of poor CO performance at low T
Relevance of water-gas shift reaction (CO as H2 source?)
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ApproachApproach

Model catalyst in “monolith form”
Simplified but representative (Pt/K/Al2O3)

Well-defined bench reactor investigation
Controlled reaction conditions
Realistic conditions

Intra-catalyst performance evaluation
Intra-channel speciation via SpaciMS
Spatial and temporal resolution

Catalyst Monolith
Cat-In Cat-Out

1/4 3/41/2

SpaciMS

Gas Flow Sampling Capillaries
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SpaciMS: Spatially-resolved capillary inlet 
Mass Spectrometry

Magnetic sector mass spectrometer
capable of quantifying various species including H2
higher time resolution than conventional analyzers

Multiple capillary inlets allow in-situ
spatially resolved measurements
minimally invasive (sample rate ~10 µL/min,
probe diameter 200 µm) 

IntraIntra--channel speciation via SpaciMSchannel speciation via SpaciMS
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Reaction ConditionsReaction Conditions

Space velocity: 25000 h-1

Temperature: 200, 300 °C

Simulated exhausts:

Environment Time Gas Composition

Lean
(storage)

56 s NO
300ppm

O2

12%
H2O
5%

N2

balance
Rich
(regeneration)

4 s Reductant*
0.5%

O2
0%

H2O
5%

N2

balance

* Pure H2, Pure CO or equimolar H2 + CO.
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Regen. Performance Comparison at 300 °C
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IntraIntra--channel NOchannel NOxx and Hand H22 Breakthrough ProfilesBreakthrough Profiles

First half of LNT being used (partial regeneration under employed conditions) 
Complete H2 consumption before ½ axial location
No change in NOx profiles after H2 depletion (importance of reductant)
Sharp NOx breakthrough at regen. inception
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IntraIntra--channel NOchannel NOxx and COand CO22 Breakthrough ProfilesBreakthrough Profiles

Similar overall trend except higher NOx peak at regen. inception 
CO2 profiles give information about CO chemistry

0.5% CO for regen.
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Three Three reductantsreductants show similar show similar NONOxx conversion efficiency at 300 conversion efficiency at 300 °°CC
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Cycle-averaged conversion vs. LNT axial location 
All three reductants very effective
Reductant consumed/NO removed=2.4
CO consumption seems slightly faster than H2 (not conclusive)
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Regen. Performance Comparison at 200 °C
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Increasing CO content decreases Increasing CO content decreases NONOxx conversion at 200 conversion at 200 °°CC

For all three reductants, lower performance than at 300 °C
Pure H2 still performs well
Inefficiency of pure CO is dramatic
Intermediate efficiency of H2 and CO mixture
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Origin of Low CO Regen Efficiency at 200 °C 
Compared to 300 °C
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transitions

Near complete CO consumption by ½ position
CO2 adsorption/desorption dynamics observed

CO2 profiles show 
CO consumption 

dynamics

Effective CO consumption over the entire Effective CO consumption over the entire regenregen. times at 300 . times at 300 °°CC
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Strong CO adsorption on Pt at 200 Strong CO adsorption on Pt at 200 °°C: C: ““CO self poisoningCO self poisoning””

Bi-modal CO2 dynamics (high > low > high reaction-rate branches)
Initial CO oxidation by surface oxygen & NOx
Rxn. suppressed w/ Pt surface dominated by CO at mid regen. times
Upon switching back to lean, surface CO is scavenged by gas-phase O2



17
OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

0

2

4

6

8

10

12

49 51 53 55 57 59

Time (s)

O
2 (

%
)

0.0

0.1

0.2

0.3

0.4

0.5

H
2 o

r C
O

2 (
%

)

Catalyst Inlet

H2

CO2

0

2

4

6

8

10

12

49 51 53 55 57 59

Time (s)

O
2 (

%
)

0.0

0.1

0.2

0.3

0.4

0.5

H
2 o

r C
O

2 (
%

)

¼ position

H2

0

2

4

6

8

10

12

49 51 53 55 57 59

Time (s)

O
2 (

%
)

0.0

0.1

0.2

0.3

0.4

0.5

H
2 o

r C
O

2 (
%

)

½ position

CO2

H2

0

2

4

6

8

10

12

49 51 53 55 57 59

Time (s)

O
2 (

%
)

0.0

0.1

0.2

0.3

0.4

0.5

H
2 o

r C
O

2 (
%

)

¾ position

CO2

H2

0

2

4

6

8

10

12

49 51 53 55 57 59

Time (s)

O
2 (

%
)

0.0

0.1

0.2

0.3

0.4

0.5

H
2 o

r C
O

2 (
%

)

Catalyst outlet

CO2

H2

Again, bi-modal CO2 dynamics
H2 consumption lower at late regen times

CO also inhibits HCO also inhibits H22 utilization at 200 utilization at 200 °°CC
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NOx, CO2, H2 profiles at ½ LNT 
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Contribution of Water-Gas Shift to Observed 
Similarity/Difference between H2 and CO?
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Direct contribution of waterDirect contribution of water--gas shift appears to be limitedgas shift appears to be limited
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56 s: 5% H2O + N2 vs. 4 s: 0.5% CO + 5% H2O + N2

Even under O2 and NOx-free condition, progression of WGS is slow
i.e., less than 10% of CO conversion via WGS at ¼ LNT at 300 °C
cf. Almost 100% CO conversion during LNT regen. at ¼ LNT
Under practical gas composition, CO conversion via WGS will be 
even significantly lower
Surface oxygen; gas-phase O2; gas-phase CO2; NOx
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ConclusionsConclusions

Time-resolved in situ intra-channel speciation clarified relative 
efficiency of H2 and CO in Pt/K/Al2O3 LNT regeneration

H2, H2/CO, CO similarly efficient at 300 °C
Reductant/NOx removed=2.4

H2 much better reductant compared to CO at 200 °C 
Higher the H2 content, better the regen efficiency

CO-poisoning of Pt sites responsible for low performance at  200 °C 
CO also inhibits H2 access to Pt sites in the case of H2/CO

Reductant activation necessary for LNT regen at 200 and 300 °C

CO acts as a direct reductant of NOx
Water-gas shift contribution as H2 source appears limited
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Future WorkFuture Work

Other reductants concentrations and ratios

Different analytical tools: DRIFTS, isotopic labeling

Different LNT formulations


