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Lean NO, Trap (LNT) Catalyst

O Proven potential for NO, removal in fuel-lean diesel environments

- a.k.a.: NO, Storage-Reduction (NSR) catalyst, NO, Adsorber Catalyst (NAC)

- 3-way catalyst + NO, storage material (alkali, alkaline-earth)
= Cyclic operation: normal lean (storage)/short rich (release/reduction)
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O NSR catalyst system is inherently transient and integral
= Evaluation/understanding challenging
= Need analytical tools with temporal and spatial resolution
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Improved understanding of LNT regeneration necessary

O Having clear understanding of chemistry/kinetics is essential for fuel-
efficient LNT system implementation (model, LNT design, control)

O For example, relative efficacy and interaction of different reductants

O CO and H, are major reductants from certain “in-cylinder” regeneration
CO and H, similarly effective except low T
Low T performance: issue relevant to cold start, small engines
= What’s the origin of similarity/difference of H, and CO?

Objectives of this study

a Compare efficiency of H, and CO reductants

Q Determine origin of poor CO performance at low T

0 Relevance of water-gas shift reaction (CO as H, source?)
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Approach

O Model catalyst in “monolith form”
- Simplified but representative (Pt/K/Al,QO,)

O Well-defined bench reactor investigation
= Controlled reaction conditions
= Realistic conditions

O Intra-catalyst performance evaluation
= Intra-channel speciation via SpaciMS
= Spatial and temporal resolution

[ SpaciMS ]
Cat-In Cat-Out
Catalyst Monolith =
Gas Flow ) I Sampling Capillaries
1/4 1/2 3/4
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Intra-channel speciation via SpaciMS

SpaciMS: Spatially-resolved capillary inlet
Mass Spectrometry

Magnetic sector mass spectrometer
capable of quantifying various species including H,
higher time resolution than conventional analyzers

Multiple capillary inlets allow in-situ
spatially resolved measurements
minimally invasive (sample rate ~10 puL/min,
probe diameter 200 pm)
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Reaction Conditions

0 Space velocity: 25000 h-t
O Temperature: 200, 300 °C

O Simulated exhausts:

Environment | Time Gas Composition

Lean 56s |NO O, H,O N,
(storage) 300ppm 12% 5% balance
Rich 4s Reductant* | O, H,O N,
(regeneration) 0.5% 0% 5% balance

* Pure H,, Pure CO or equimolar H, + CO.
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Regen. Performance Comparison at 300 °C
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Intra-channel NO, and H, Breakthrough Profiles

0.5% H, for regen. 4-s regeneration
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= First half of LNT being used (partial regeneration under employed conditions)
= Complete H, consumption before %2 axial location
= No change in NO, profiles after H, depletion (importance of reductant)

= Sharp NO, breakthrough at regen. inception
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Intra-channel NO, and CO, Breakthrough Profiles

0.5% CO for regen. 4-s regeneration
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= Similar overall trend except higher NO, peak at regen. inception
= CO, profiles give information about CO chemistry
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Three reductants show similar NO, conversion efficiency at 300 °C

0.5% H,
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= Cycle-averaged conversion vs. LNT axial location

0.25% H,+0.25% CO

0 1/4 1/2 3/4
Relative sampling position

= All three reductants very effective
= Reductant consumed/NO removed=2.4

= CO consumption seems slightly faster than H, (not conclusive)
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Regen. Performance Comparison at 200 °C
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Conversion (%)

Increasing CO content decreases NO, conversion at 200 °C

0.5% H, 0.25% H,+0.25% CO 0.5% CO
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= For all three reductants, lower performance than at 300 °C
« Pure H, still performs well

= Inefficiency of pure CO is dramatic
= Intermediate efficiency of H, and CO mixture
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Origin of Low CO Regen Efficiency at 200 °C
Compared to 300 °C
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Effective CO consumption over the entire regen. times at 300 °C
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= Near complete CO consumption by Y2 position
= CO, adsorption/desorption dynamics observed
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Strong CO adsorption on Pt at 200 °C: “CO self poisoning”
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= Bi-modal CO, dynamics (high > low > high reaction-rate branches)

« Initial CO oxidation by surface oxygen & NO,

= Rxn. suppressed w/ Pt surface dominated by CO at mid regen. times

- Upon switching back to lean, surface CO is scavenged by gas-phase O,
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CO also inhibits H, utilization at 200 °C
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= Again, bi-modal CO, dynamics
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= H, consumption lower at late regen times
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CO-poisoning of Pt prevents efficient NO, release & reduction
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Contribution of Water-Gas Shift to Observed
Similarity/Difference between H, and CO?
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Direct contribution of water-gas shift appears to be limited

56 s: 5% H,O + N, vs. 4's: 0.5% CO + 5% H,O + N,
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= Even under O, and NO,-free condition, progression of WGS is slow
l.e., less than 10% of CO conversion via WGS at ¥ LNT at 300 °C
cf. Almost 100% CO conversion during LNT regen. at ¥ LNT

= Under practical gas composition, CO conversion via WGS will be
even significantly lower
Surface oxygen; gas-phase O,; gas-phase CO,; NO,
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Conclusions

O Time-resolved in situ intra-channel speciation clarified relative
efficiency of H, and CO in Pt/K/Al,O, LNT regeneration

a H,, H,/CO, CO similarly efficient at 300 °C
= Reductant/NO, removed=2.4

O H, much better reductant compared to CO at 200 °C
= Higher the H, content, better the regen efficiency

O CO-poisoning of Pt sites responsible for low performance at 200 °C
= CO also inhibits H, access to Pt sites in the case of H,/CO

O Reductant activation necessary for LNT regen at 200 and 300 °C

O CO acts as a direct reductant of NO,
= Water-gas shift contribution as H, source appears limited
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Future Work

O Other reductants concentrations and ratios

Q Different analytical tools: DRIFTS, isotopic labeling

O Different LNT formulations
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