Spatially-resolved *in situ* measurements of transient species breakthrough during low-temperature regeneration of a Pt/K/Al₂O₃ lean NO_x trap

Jae-Soon Choi, William P. Partridge, C. Stuart Daw Oak Ridge National Laboratory

> 8th CLEERS Workshop May 17-19, 2005

Sponsor

U.S. Department of Energy, OFCVT

Gurpreet Singh, Ken Howden, Kevin Stork

Catalyst provider

EmeraChem

Collaborators

Andrea N. Strzelec (Univ. Wisconsin) Trevor W. Miller (Univ. Tennessee) Katey E. Lenox (ORNL) Kalyana Chakravarthy (ORNL)

Lean NO_x Trap (LNT) Catalyst

- □ Proven potential for NO_x removal in fuel-lean diesel environments
- a.k.a.: NO_x Storage-Reduction (NSR) catalyst, NO_x Adsorber Catalyst (NAC)
- 3-way catalyst + NO_x storage material (alkali, alkaline-earth)
- Cyclic operation: normal lean (storage)/short rich (release/reduction)

NSR catalyst system is inherently transient and integral

- Evaluation/understanding challenging
- Need analytical tools with temporal and spatial resolution

Improved understanding of LNT regeneration necessary

- Having clear understanding of chemistry/kinetics is essential for fuelefficient LNT system implementation (model, LNT design, control)
- □ For example, relative efficacy and interaction of different reductants
- \Box CO and H₂ are major reductants from certain "in-cylinder" regeneration
 - CO and H₂ similarly effective except low T
 - Low T performance: issue relevant to cold start, small engines
 - What's the origin of similarity/difference of H₂ and CO?

Objectives of this study

- Compare efficiency of H₂ and CO reductants
- Determine origin of poor CO performance at low T
- Relevance of water-gas shift reaction (CO as H₂ source?)

Approach

- Model catalyst in "monolith form"
 - Simplified but representative (Pt/K/Al₂O₃)
- Well-defined bench reactor investigation
 - Controlled reaction conditions
 - Realistic conditions
- Intra-catalyst performance evaluation
 - Intra-channel speciation via SpaciMS
 - Spatial and temporal resolution

Intra-channel speciation via SpaciMS

SpaciMS: Spatially-resolved capillary inlet Mass Spectrometry

Magnetic sector mass spectrometer

capable of quantifying various species including H₂ higher time resolution than conventional analyzers

Multiple capillary inlets allow *in-situ* spatially resolved measurements

minimally invasive (sample rate ~10 μ L/min, probe diameter 200 μ m)

□ Space velocity: 25000 h⁻¹

□ Temperature: 200, 300 °C

Simulated exhausts:

Environment	Time	Gas Composition			
Lean	56 s	NO	O ₂	H ₂ O	N ₂
(storage)		300ppm	12%	5%	balance
Rich	4 s	Reductant*	O ₂	H ₂ O	N ₂
(regeneration)		0.5%	0%	5%	balance

* Pure H_2 , Pure CO or equimolar H_2 + CO.

Regen. Performance Comparison at 300 °C

Intra-channel NO_x and H₂ Breakthrough Profiles

- First half of LNT being used (partial regeneration under employed conditions)
- Complete H₂ consumption before ½ axial location
- No change in NO_x profiles after H₂ depletion (importance of reductant)
- Sharp NO_x breakthrough at regen. inception

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Intra-channel NO_x and CO₂ Breakthrough Profiles

- Similar overall trend except higher NO_x peak at regen. inception
- CO₂ profiles give information about CO chemistry

Three reductants show similar NO_x conversion efficiency at 300 °C

- Cycle-averaged conversion vs. LNT axial location
- All three reductants very effective
- Reductant consumed/NO removed=2.4
- CO consumption seems slightly faster than H₂ (not conclusive)

Regen. Performance Comparison at 200 °C

Increasing CO content decreases NO_x conversion at 200 °C

- For all three reductants, lower performance than at 300 °C
- Pure H₂ still performs well
- Inefficiency of pure CO is dramatic
- Intermediate efficiency of H₂ and CO mixture

Origin of Low CO Regen Efficiency at 200 °C Compared to 300 °C

Effective CO consumption over the entire regen. times at 300 °C

- Near complete CO consumption by ½ position
- CO₂ adsorption/desorption dynamics observed

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Strong CO adsorption on Pt at 200 °C: "CO self poisoning"

- Bi-modal CO₂ dynamics (high > low > high reaction-rate branches)
- Initial CO oxidation by surface oxygen & NO_x
- Rxn. suppressed w/ Pt surface dominated by CO at mid regen. times
- Upon switching back to lean, surface CO is scavenged by gas-phase O₂

- Again, bi-modal CO₂ dynamics
- H₂ consumption lower at late regen times

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

CO-poisoning of Pt prevents efficient NO_x release & reduction

 NO_x, CO₂, H₂ profiles at ½ LNT at 200 °C

 Indicates importance of reductant activation for NO_x release

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Contribution of Water-Gas Shift to Observed Similarity/Difference between H₂ and CO?

Direct contribution of water-gas shift appears to be limited

- Even under O₂ and NO_x-free condition, progression of WGS is slow i.e., less than 10% of CO conversion via WGS at ¹/₄ LNT at 300 °C *cf. Almost 100% CO conversion during LNT regen. at ¹/₄ LNT*
- Under practical gas composition, CO conversion via WGS will be even significantly lower Surface oxygen; gas-phase O₂; gas-phase CO₂; NO_x

Conclusions

- Time-resolved in situ intra-channel speciation clarified relative efficiency of H₂ and CO in Pt/K/Al₂O₃ LNT regeneration
- □ H₂, H₂/CO, CO similarly efficient at 300 °C
 - Reductant/NO_x removed=2.4
- □ H₂ much better reductant compared to CO at 200 °C
 - Higher the H₂ content, better the regen efficiency
- **CO-poisoning of Pt sites responsible for low performance at 200 °C**
 - CO also inhibits H₂ access to Pt sites in the case of H₂/CO
- Reductant activation necessary for LNT regen at 200 and 300 °C
- **CO** acts as a direct reductant of NO_x
 - Water-gas shift contribution as H₂ source appears limited

- **Other reductants concentrations and ratios**
- **Different analytical tools: DRIFTS, isotopic labeling**
- **Different LNT formulations**

