Practical Issues in Characterizing LNT Materials

Stuart Daw, Kalyana Chakravarthy, Jim Parks, Jae-Soon Choi, Todd Toops (ORNL), Josh Pihl (University of Wisconsin)

8th CLEERS Workshop University of Michigan, Dearborn May 17-19, 2005

Sponsor : US Department of Energy, OFCVT Program Managers : Gurpreet Singh, Kevin Stork, Ken Howden

Objectives

- Need generic protocol to produce consistent (repeatable & precise) performance information from bench measurements of LNT materials for simulating LNT devices
- Specific performance features to be quantified include:
 - Rates/capacities for following processes as functions of exhaust temperature, composition:
 - NO/NO₂ adsorption during lean condition
 - NO/NO₂ release, reduction during rich condition
 - Net reductant consumption (by species)
 - Byproduct formation (NH₃, N₂O)
 - Impact of S poisoning, aging

2

Approach

- CLEERS LNT Group issued draft protocol last June (visit www.cleers.org to download)
- Key protocol elements:
 - Defined sample (monolith core) size, degreening, T/C's
 - Short-cycles (60s/5s) at 5 temps with CO/H₂ reductant
 - Short-cycles (60s/5s) at 5 temps with simulated liquid diesel or gasoline reductant
 - Long cycles (15/10 min) at 5 temps with H₂ and CO/H₂ reductant
 - Exit measurement of NO, NO₂, H₂, CO, O₂, N₂O, NH₃, tHC
 - Instrument, switching valve calibrations
 - <=2 week completion time (8 hours/day)</p>

Basic bench-reactor features defined for ⁴ the protocol

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Umicore reference material has been very 5 beneficial for protocol

- Source: Owen Bailey
- Commercial European GDI
- Samples
 - 8 bricks to ORNL, 2 to another CLEERS member
 - 7 LNT Focus members are testing samples
- Dimensions:
 - Cylindrical, 4.66"D x 6"L or ~1.7L bricks
 - 625 cpsi
- Composition:
 - Alumina washcoated cordierite
 - Approximately 110 g/ft3 PGM (Pt/Pd/Rh)
 - Ba, Ceria, Zirconia, Lanthanum

- Degreening (initial):
 - 16 hrs at 700°C with 10% H2O/air
 - Desulfation T= 700°C

No restriction on measurements makes full information integration, site-to-site comparisons possible

ORNL protocol testing has confirmed some measurement issues to be addressed

- Corrections for instrument dynamics
- O₂ storage measurements
- Sample length effects
- High NH₃/N₂O levels
- Large hysteresis for degreened samples

O₂ storage has turned out to be an important feature for LNT's

- Large O₂ capacity (like 3-way)
- Increases reductant consumption
- Not explicit in current protocol
- Dynamic instrument response important for measurement

300C O₂ Storage Isotherm for Umicore LNT (from UEGO reductant breakthrough time)

Sample length affects measured response

∆T (mid-in) (°C) Time (s)

– 0.5 in. Exit N20 (ppm) 3 in. Time (s)

Protocol runs with degreened Umicore samples

- 3-inch and 0.5 inch lengths
- SV = 30,000 1/hr for both
- 60 s lean (300 ppm NO), 5 s rich (9000 ppm C0 / 5400 ppm H₂)
- Examples here at 300°C

NH₃ & N₂O are more plentiful than expected

- Level depends on T, reductant concentration
- Such high levels of NH₃ can cause NOx measurement errors, high reductant consumption
- FTIR response is slow, hard to resolve details

Protocol long cycle test on Umicore, 200°C, 0.1% CO/H₂ mix

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hysteresis has also been greater than expected for degreened LNT samples

Analysis of original Umicore sample

<u>Sample</u>	Total BET area (m ² /g
Original	29.1
Degreened ¹	20.6
Reduced Degree	eened ² 27.1

¹ Aged 16 h in 10% H_2O/air

² Reduced in 1% H₂/Ar over night at 450°C

Bench test of engine-aged MECA sample

Summary of LNT Bench Observations

- LNT protocol has remaining issues to be resolved:
 - O₂ storage measurement
 - Accounting for length effects, instrumentation response, NH₃
 - Consistent reduction of degreened samples (sample stability, handling)
 - Integration with aging assessment
- Consistency among labs greatest near 300°C, worst <=200°C, >=500°C
- Consistency problems imply greater care, more standardization needed
- Current LNT published data probably do not meet the required consistency standard

11