Visualization on Reaction of Diesel Particulates in Regeneration of DPF

Katsunori HANAMURA

Research Center for Carbon Recycling & Energy Tokyo Institute of Technology Japan

Microscopic Observation in Regeneration

I. Macroscopic Observation

Measurement of Temperature

Variation of Temperature with Time

propagating-reaction regeneration

uniform-reaction regeneration

Definition of Reaction Intensity

Elapsed time(s)

Reaction Diagram

Ignition and Propagation Mechanism

Variation of ignition location from the entrance

II. Microscopic Observation

Measurement

SEM Image of the DPF wall surface

Pressure Drop through DPF wall

Microscopic Observation in Regeneration of DPF (PM mass: 9.4mg/cm³)

Inlet Velocity 4.4 m/s

> Inlet Temp. 688°C

Inlet Temp.; 579°C, Velocity; 3.6m/s, Particulate Mass; 9.4 mg/cm³

Inlet Temp.; 572°C, Velocity; 3.6m/s, Particulate Mass; 9.4 mg/cm³

Reproducibility for Regeneration of DPF

Beginning ofBeginning ofTrappingRegenerationTrapping Location and Regeneration Starting Location

Mechanism of Regeneration

Particulate mass; 9.4mg/cm³, Velocity; 4.4m/s

Mechanism of Regeneration

Mechanism of Regeneration

Arrhenius Plot

Concluding Remarks I

- (1)Trapping and regeneration process could be clearly seen.
- (2) Basically, there are two kinds of reaction mechanisms with a high brightness reaction zone and without such a clear reaction zone.
- (3) These reaction mechanisms are described by a reaction diagram using the inlet gas temperature and the particulate mass.
- (4) The ignition and the propagation mechanisms are well understood using the reaction diagram.

Concluding Remarks II

- (1) Regeneration starts from the location of large-scale craters. In the beginning of trapping, only the crater collects particulates.
- (2) From microscopic observation, it is disclosed that basically, the heterogeneous reaction occurs in regeneration.
- (3) The reaction rate will be enhanced by making fine craters on the DPF wall surface
- (4) Catalysis coating on the crater surfaces is very useful to enhance the reaction rate.

Microscopic Observation of Trapping

1 minute past

30 minutes past

Inlet of DPF

Middle of DPF