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AFTERTREATMENT MODELING GOALS

• Physical Mechanisms Included:
– Flow characteristics in individual monolith channels
– Global flow characteristics upstream/downstream of monolith (eg. 

expansion/contraction of exhaust tube)
– Chemical Kinetics: Catalytic surface reactions and gas phase chemistry using 

STAR/Kinetics
– Conjugate heat transfer of the entire system
– Soot Filtration Model for DPF, CSF

• To Model the Entire Aftertreatment Device(s):
– 3 Way Catalytic Converter
– Selective Catalytic Reduction (SCR)
– Sulfur Trap
– Lean NOx Trap (LNT)
– Diesel Particulate Filter (DPF)
– Catalyzed Soot Filter(CSF,CRT)
– Multiple Devices



Ceramic “Brick” Monoliths



• Velocity, pressure, and all other flow variables are continuously 
coupled with a new coupling algorithm in STAR-CD (connect average)

• Coupling insures average flux continuity across discrete pairs of 
boundary regions 

• In this example, each channel is associated with a different radial zone 
of the inlet and outlet pipes

Representative Channel Coupling



REPRESENTATIVE CHANNEL COUPLING

• Cartesian Based Subdivision



z

Conjugate Heat Transfer Coupling

q = q (z)

T = T (z)



Conjugate Heat Transfer Coupling Assumptions

• Temperature in wall between channels is almost constant 
across the wall

• Channel to channel temperature variations are small
• Thermal properties of solid are the homogenized properties 

(effective properties of a solid with voids)



SIMPLE Transient
Solver for Multiple Time Scale Physics

• Multiple Time Scale Physics
– Conduction heat redistribution time on order 10’s minutes
– Catalyst adsorption/desorption time on order of minutes
– Thermal warm-up/light-off time on order of minutes
– Fluid channel resident time on order of 10-100ms
– Chemical equilibrium time on order of 1ms

• Fluid & chemistry is in a quasi-steady state relative to the warm-up, adsorption, 
and heat diffusion time scale

• SIMPLE transient with CHEMKIN Coupling
– Completely implicit, stable at any time step size
– Stable for time steps on the thermal time scale and yet accurate

representation of the fluid and chemistry quasi-steady states
– >1000 fold increase in performance over PISO



DPF Model Development

• Development follows work at 
Michigan Tech University (MTU) 
and Aerosol & Particle 
Technology Laboratory (APTL) 

• 1-D deep bed filtration pore unit 
cell model 

• Particle size dependent 
filtration

• Deep-bed to soot cake 
transition model

• Porous wall permeability 
depends on retained soot mass

• Heat transfer from gas to soot 
cake and porous wall

• Thermal and catalytic oxidation 
on “2-layer” model
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DPF Representative Channel
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Porous Wall Filter
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Soot Cake Growth

• Conservation of retained soot mass in soot cake

• Deep-bed to soot cake partition from spherical unit collector:

pores open 0 < Φ < 1 pores complete closed
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DPF Chemistry (Thermal Oxidation)

– : specific surface area (m2/m3) !!!
– ,           : mass and mole fraction of oxygen 
– : pre-exponential frequency factor (m/s/°K)
– : activation energy (J/mole)

(kg/m3/s)

– CO selectivity
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User Customizations

• subroutine porous_wall_properties
– sets the local porous wall properties:
– porosity,permeability,filter efficiency, specific area, ..

• subroutine soot_cake_properties
– sets the local porous wall properties:
– porosity,permeability,filter efficiency, specific area, ..

• subroutine reactwall
– sets the local reactions rates within the porous wall

• subroutine reactsc
– sets the local reactions rates within the soot cake



Test Dataset and Geometry

brick solids associated with each channel

insulation

inlet

outlet

Numerical model:
5 representative channels

axisymmetric

heat loss on manifold and can

uniform or non-uniform inlet 
temperature

Test data: DPF-CRT

7 data sets of loading and 
regeneration over wide range

exhaust flow rates

exhaust PM concentration

exhaust NO and NO2
concentration

presumed uniform inlet 
conditions



Heat Loss Effects
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Model Limitations

• microstructural variations of soot cake properties especially 
during forced or continuous regeneration 

• porous wall permeability , porosity evolution requires small 
soot packing densities

• Characterization of catalytic chemistry for a wash coat



Loading with Complex Geometry

• Inlet Elbow, Non Cylindrical DPF
• Poor upstream distribution
• Isothermal Loading
• constant inlet conditions
• 6x5 channels
• 3 hr loading, 1.5 minute steps



Retained soot mass density

• uneven distribution of the 
collected soot within the DPF

• strong later variations
• somewhat weaker axial 

variations with more soot 
downstream



Velocity Redistribution



Post Processing:   History  Files

• pressure drop history 
across DPF
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DPF Regeneration 

• Initially loaded DPF with 9 grams of soot  (5 g/liter)
• Initially at thermal equilibrium with an inlet 

temperature of 600 °C 
• heat losses on inlet/outlet manifold
• Thermal oxidation only
• Flow rates held constant
• Burns in < 1 minute, time step = 0.2 s
• 5x5 channels



DPF Regeneration: Post Processing

pressure drop
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DPF Regeneration: Results

• Retained soot density



DPF Regeneration: Results

• Temperature (Solid, upstream and downstream gas)



Computer Resources

• Axisymmetric DPF-CRT loading simulations 
– 1.5 minute step sizes over 3 hr loading period
– 5 representative channels 
– NOx assisted catalytic and thermal oxidation chemistry
– 20 minutes CPU (single processor pentium IV)

• 3-D DPF loading with complex geometry
– 1.5 minute step sizes over 3 hr loading period
– 30 representative channels 
– 1.5 hr CPU (single processor xeon)

• 3-D DPF Regeneration
– 0.2 step sizes over 1 min period
– 25 representative channels 
– thermal oxidation
– 4 hr CPU (single processor xeon)



Characterization of DPF Monoliths and Wash 
coats

• Agreement of a standard of “ideal” laboratory tests 
– loading only
– loading and continuous regeneration
– forced regeneration

• Agreement of a standard model to characterize DPF 
properties

– under the “ideal” laboratory conditions
– models are sufficiently concise so “fits” of laboratory data are 

practical
• Vendors characterize their products by publishing standard 

model properties fit to standard tests


