

Combining Theory and Experiments in Studies of Structural Changes in LNT Materials

<u>C.K. Narula¹</u>, W. Shelton¹, L.F. Allard¹, Y. Xu¹, M. Moses¹, W. Schneider², B. Gates³

¹ ORNL ² Univ. Notre Dame ³ UC, Davis

May 17-19, 2004

Eighth DOE Crosscut Workshop on Lean Emissions Reduction Simulation, University of Michigan - Dearborn, Dearborn, Michigan 48128 OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Combining Theory and Experiments

- Is it possible to examine computationally complex but experimentally simple systems by both theoretical and experimental methods?
 - Forecast improvements
 - Optimize Performance

What happens in the Real World?

- Supplier NO_x Traps [Collaboration with Ford]
 - Flow-Reactor Aging
 - Dyno Aging
 - Passenger Vehicle (DISI Fleet) Aging
 - 30K km
 - 53K km
 - 82K km

Microstructural Studies of Supplier NO_x Traps - Pulsator Aging

Lean and rich aged samples showed that the

- Sintering of platinum particles occurs during aging
- Barium migrates into ceria-zirconia layer.
- Both of these factors reduce platinum-barium oxide surface area where NO_x adsorption and reduction takes place during lean and rich cycles respectively.
- The stoichiometric aging also leads to the migration of barium into ceria-zirocnia layer but the sintering of platinum is less severe.

Microstructural Studies of Supplier NO_x Traps – Dyno Aging

The dyano aged samples showed extensive sintering of platinum and its migration in ceria-zirconia layer.

The sintering of rhodium as well as the migration of barium into ceria-zirconia was also observed

These observation explain the deterioration in LNT performance over time

Microstructural Studies of Supplier NO_x Traps - Passenger Vehicle (DISI Fleet) Aging

 The analysis of on vehicle evaluated samples after 32K km and 80km showed that the bulk of precious metal sintering occurred in the early stages of on vehicle aging

Ex-Situ Reactor

Rapid Screening Method for Monitoring Microstructural Changes

On-Off Valve (Electrical Control

Model Catalysts

- Model Catalysts were prepared by step-wise impregnation of commercial alumina
- 2%Pt-98%[10%CeO₂-ZrO₂-90%(2%La₂O₃-98%BaO.6Al₂O₃)]
 - Impregnate alumina with barium salts and thermally treat in air to obtain $BaO.6Al_2O_3$
 - Impregnate BaO.6Al₂O₃ with Lanthanum salt and thermally treat in air to obtain 2%La₂O₃-98%BaO.6Al₂O₃
 - Ball mill 2%La₂O₃-98%BaO.6Al₂O₃ with commercial CeO₂-ZrO₂
 - Impregnate 10%CeO₂-ZrO₂-90%(2%La₂O₃-98%BaO.6Al₂O₃ with Pt salts and thermally treat to obtain model NO_x trap
- Pt/Al_2O_3
 - Impregnate alumina with Pt salts and thermally treat to obtain model NO_x trap
- 2%Pt, 5%MnO₂-93%[10%CeO₂-ZrO₂-90%(2%La₂O₃-98% BaO.6Al₂O₃)]
 - Impregnate 2%Pt-98%[10%CeO₂-ZrO₂-90%(2%La₂O₃-98%BaO.6Al₂O₃)] with manganese salts and thermally treat to obtain model NO_x trap

Thermal Stability of Impregnation BaO.6Al₂O₃

Temperature (C) Molecular Sieves [From Barium & Aluminum Alkoxides using Tergitol 15-S-12 as template] Α.

- Β. BaO.6Al₂O₃ from Alkoxide hydrolysis
- C. BaO.6Al₂O₃ [BaO impregnated Alumina]
- D. 2% La₂O₃ impregnated on BaO.6Al₂O₃; D'. 90% D + 10% CeO₂-ZrO₂
- Ε. 10% ZrO₂ impregnated on BaO.6Al₂O₃.
- F. BaO.6Al₂O₃ [From decomposition of a mixture of nitrates].

G. BaO.6Al₂O₃ [Lit., J. Mater. Sci, 29 (1994) 3441, carbonate method]. **OAK RIDGE NATIONAL L'ABORATORY U. S. DEPARTMENT OF ENERGY**

Lean-Rich Cycle Aging of $(500^{\circ}C, 4hrs)$ 2%Pt, 98%[10%CeO₂-ZrO₂-90%(2%La₂O₃-98% BaO•6Al₂O₃)] [60s-5s cycle]

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Fresh

1.23nm → 1.49nm

Fresh and Lean/Rich Aged ($500^{\circ}C$, 4hrs) 2%Pt, 5%MnO₂-93%[10%CeO₂-ZrO₂-90% (2%La₂O₃-98% BaO•6Al₂O₃)] [60s-5s cycle]

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

1.4nm → 1.3nm

Fresh

DF-STEM of fresh and lean-rich diesel Cycle (60s, 5s) aged 2%Pt-98%[10%CeO₂-ZrO₂-90%(2%La₂O₃-98% BaO•6Al₂O₃)] at 700 °C

Fresh

1st 4h period

2nd 4h period

3rd 4h period Oak Ridge National Laboratory U. S. Department of Energy

Summary of Pt particle size change under various treatments of the model catalysts

	Fresh Sample <u>¹</u>	Thermal Aging In Air (XRD of powder)	Lean Diesel Aging 500 °C/ 4h	Rich Diesel Aging 500 °C/ 4h	Lean/ Rich Cycle (60s/5s) Diesel Aging 500 °C/ 4h ¹	Lean/Rich Thermal Diesel Aging 700 °C ¹
2% Pt / γ-Al ₂ O ₃	0.5 - 1.0 nm (0.9 nm)	600°C, 3.4 nm 700°C, 17.1nm 800°C, 26.1nm 900°C, 39.5nm	1.0 - 1.5 nm ¹ (1.3 nm)	2.0 - 4.0 nm		
2%Pt- 98%[10%CeO ₂ -ZrO ₂ - 90%(2%La ₂ O ₃ -98% BaO•6Al ₂ O ₃)]	1.0 – 1.5 nm (1.45 nm)	600°C, 2.6 nm 700°C, 21.3nm 800°C, 37.2nm 900°C, 48.4nm	1.0 -2.0 nm	1.5 - 3.5 nm	1.0 - 1.5 nm (1.7 nm)	1.0 nm F (1.4 nm) 1.5 - 2.0 nm 4h (2.1 nm) 1.5 - 2.0 nm 8h (2.1 nm) 1.5 nm 12h (2.0 nm) nm 16h
2%Pt, 5%MnO ₂ - 93%[10%CeO ₂ -ZrO ₂ - 90%(2%La ₂ O ₃ -98% BaO•6Al ₂ O ₃)]	1.0 - 1.5 nm (1.6 nm)	700°C, 20.7nm 800°C, 27.0nm 900°C, 34.0nm	2 - 3 nm	1 - 2 nm	1.0 – 1.5 nm (1.7 nm)	

<u>1.</u> The distribution is centered on these values. Averages are reported in brackets.

Combining Theory and Experiments

>Noble Metal

Pt, Rh, Ru, Re

Substrate

- Commercial, sol-gel, molecular sieve
- Al₂O₃, SiO₂, MgO

Theoretical Modeling - Method

Density functional theory calculations

Generalized gradient approximation (PW91 functional)

> Spin polarization to capture correct ground state

> Oxidation energy of Pt_xO_v clusters calculated as:

$$OE = (E_{cluster} - E_{Pt_{x}} - \frac{1}{2} y \cdot E_{O_{2}}) / x$$

(1 eV \approx 100 kJ/mol \approx 23 kcal/mol)

Oak Ridge National Laboratory u. s. de **Gonvergence** of results verified

Oxidation thermodynamics of Pt oxide clusters

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Y. Xu, W. A. Shelton, W. F. Schneider, J. Phys. Chem. B, to be submitted

JT-BATTELL

Binding energies of single O, O₂, and CO on Pt clusters

Y. Xu, W. A. Shelton, W. F. Schneider, J. Phys. Chem. B, to be submitted

Theoretical Model tells us that...

- Pure Pt clusters are easily oxidized; supported Pt nanoparticles should primarily be in oxidized forms in oxidizing environment
- +4 oxidation state (i.e., Pt:O=1:2) is favored thermodynamically for Pt atoms
- Pt clusters have very different oxidation energetics and oxidized structures compared to the bulk phase
- Adsorption properties of O, O₂, and CO on Pt clusters very different compared to extended Pt surface
- Even small Pt oxide clusters are structurally complex, although patterns can be detected and aid in future analysis

Combining Theory and Experiments

>Noble Metal

Pt, Rh, Ru, Re

Substrate

- Commercial, sol-gel, molecular sieve
- Al₂O₃, SiO₂, MgO

Pt-Al₂O₃ System

≻γ- Alumina

- Commercial
- Sol-Gel
- Molecular Sieves

≻Pt

- Carbonyl clusters
- Decarbonylated clusters
- Pt_n
- Pt_x

	Comm. γ-Al ₂ O ₃	Sol-gel γ-Al ₂ O ₃	Mol. Sieve γ -Al ₂ O ₃
Pt carbonyl	\checkmark	\checkmark	\checkmark
Decarbonyl ated		\checkmark	\checkmark
Pt _n	$\sqrt{\sqrt{1}}$	\checkmark	\checkmark
Pt _x	$\sqrt{\sqrt{1}}$	\checkmark	\checkmark

Support: Sol-Gel Alumina

Burggraaf, A.J.; et al.; J. Materials Sc., 1984, 19, 1077

Narula, C.K.; et al.; US Patent 5,210,062, May 11, 1993

Support – Alumina Molecular Sieve

Narula, C.K.; et al., AIChE Journal, 2001, 47, 744.

Support: Alumina Molecular Sieves

Shanks et al., Adv. Funct. Mater., 2003, 13, 61

Support: Alumina Molecular Sieves

Fig. 1. SEM images and adsorption/desorption isotherm plots for Sample 1 (a,b), with 2 μ m scale bar on SEM image, and for short synthesis time alumina (c,d), with 5 μ m scale bar on SEM image.

Fig. 2. SEM images and adsorption/desorption isotherm plots for Sample 3 (a,b), with 1 µm scale bar on SEM image, and Sample 2 (c,d), with 1 µm scale bar on SEM image.

Noble Metal On Support: Pt_n and Pt_x supported on Commercial γ-Al₂O₃

500°C, 1.2 nm 600°C, 3.4 nm 700°C, 17.1nm 800°C, 26.1nm 900°C, 39.5nm

Oak Ridge National Lab

Noble Metal on Support: Pt_n supported on Commercial γ-Al₂O₃

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

HD-08620 x900k ZC

Re-Al₂O₃ System

≻γ- Alumina

- Commercial
- Sol-Gel
- Molecular Sieves

≻Re

- Carbonyl clusters
- Decarbonylated clusters
- Pt_n
- Pt_x

	Comm. γ-Al ₂ O ₃	Sol-gel γ-Al ₂ O ₃	Mol. Sieve γ -Al ₂ O ₃
Re carbonyl	$\sqrt{\sqrt{2}}$	\checkmark	\checkmark
Decarbonyl ated	$\sqrt{}$	\checkmark	\checkmark
Re _n	\checkmark	\checkmark	\checkmark
Re _x	\checkmark	\checkmark	\checkmark

Noble Metal on Support: H₃Re₃(CO)₁₂/commercial γ-Al₂O₃ System

- H₃Re₃(CO)₁₂ was synthesized by literature methods and adsorbed on commercial γ– Al₂O₃ powder
- IR and EXAFS indicate that rhenium tricarbonyl clusters are present on the sample

Noble Metal on Support: Decarbonylated Re Clusters on Commercial γ-Al₂O₃

- > The H₃Re₃(CO)₁₂/commercial γ -Al₂O₃ powder was decarbonylated in flowing He and in flowing H₂.
 - The sample after treatment in H₂ at 673K was completely decrbonylated.
- The EXAFS parameters (coordination number N_{Re-} _{Re} = 2.3, distance R_{Re-Re} = 2.69Å) indicate trirhenium raft-like structure on the support.
- ➢ Re-support interaction via short Re-O bonds (N_{Re-O} = 1.0, R_{Re-O} = 2.04Å) and a long Re-O contribution (N_{Re-O} = 0.7, R_{Re-O} = 2.56Å) is evident.

Bhirud, V.A., Narula, C., Gates, B.C., "v-Al₂O₃ Supported Trirhenium Rafts: Spectroscopic and Microscopic Characterization", 19th North American Catalysis Society Meeting, Philadelphia, USA, May 22-27, **2005**

Noble Metal on Support: Decarbonylated Re Clusters on Commercial γ-Al₂O₃

>XANES studies indicate that rhenium rafts are highly electron deficient and cationic in nature and Re is in +4 to +6 oxidation state.

Experimental Results

- Alumina Substrate materials with controlled surface properties are available.
- Carbonylated, decarbonylated, and small clusters of noble metals can be deposited on the substrates.
- While bulk analysis techniques such as IR, XRD, EXAFS and XANES provide substantial information on these materials, the availability of ACEM makes it possible to carry out microtructural characterization of catalyst sites.

Publications

- Bhirud, V.A., Narula, C., Gates, B.C., γ-Al₂O₃ Supported Trirhenium Rafts: Spectroscopic and Microscopic Characterization, 19th North American Catalysis Society Meeting, Philadelphia, USA, May 22-27, (2005)
- Xu, Y.; Shelton, W.A.; Schneider, W.F.; Nanoscale Effects in the Reactivity of Pt Clusters towards CO oxidation, 19th North American Catalysis Society Meeting, Philadelphia, USA, May 22-27, (2005)
- Xu, Y.; Shelton, W.A.; Schneider, W.F.; Theoretical studies based on post-Hartree-Fock and DFT methods, Synthesis and applications of oxide nanoparticles and nanostructures, Ed. Rodriguez, J.A.; John Wiley & Sons
- Bhirud, V.A.; Moses, M.J.; Blom, D.A.; Allard, Jr. L. F.; Aoki, T.; Mishina, S.; Narula, C.K.; Gates, B.C.; Alumina-supported Tri-rhenium Clusters Visible by Aberration-Corrected Dark-field STEM, Microscopy and Microanalysis 2005, Honolulu, USA July 31-August 4, (2005).
- > Y. Xu, W. A. Shelton, W. F. Schneider, J. Phys. Chem. B, to be submitted
- C.K. Narula, S. Daw, J. Hoard, T. Hammer, Materials Issues Related to Catalysts for Treatment of Diesel Exhaust, I.J. Amer. Ceram. Tech., (invited)

Next Steps

- > Effect of T and p on stability and distribution of gas-phase PtO_y , Pt_2O_y , and Pt_3O_y clusters current results valid for 0 K
- Reactivity of Pt and Pt oxide nanoclusters
 - the adsorption of O, O₂, and CO (already under way for pure Pt clusters)
 - the oxidation of CO
- Effect of support on the reactivity of Pt oxide nanoclusters
- Synthesis and microstructural characterization of Pt/Al₂O₃ and Re/Al₂O₃ systems
- Initiate CO-oxidation studies on these systems
- Microstructural changes in model NO, trap materials after aging cycle on ex-situ reactor in presence of SO₂
- NO_x-trap efficiency studies on bench-top flow reactor

Acknowledgements

- K. Lester (ORNL)
- G. Graham, J. Theis, J. Hoard, (Ford Motor Co.)
- The projects are sponsored by the Heavy Vehicle Propulsion Materials Program, DOE Office of FreedomCAR and Vehicle Technology Program, under contract DE-AC05-000R22725 with UT-Battelle, LLC
 - Sid Diamond
 - Ray Johnson

