Lean NOx Trap Regeneration Studies on a Light-Duty Diesel Engine with In-Cylinder Air-to-Fuel Control

Jim Parks, Shean Huff, Jae-Soon Choi, Brian West Oak Ridge National Laboratory Fuels, Engines, Emissions Research Center

> Josh Pihl University of Wisconsin

8th CLEERS Workshop

May 16-19, 2005 Dearborn, MI

Outline

- Reductant Production from In-Cylinder Regeneration Strategies
- N₂ Selectivity of Lean NOx Trap Regeneration Processes
 - Bench Flow Reactor Studies
 - Engine Studies

Acknowledgements

- U.S. DOE Office of FreedomCAR and Vehicle Technology
- Program Managers: Gurpreet Singh, Ken Howden, and Kevin Stork

Schematic of Experimental Setup [MECA Supplied DOC and LNT]

Comparison of three strategies for achieving intermittent rich combustion

- Two strategies employ no EGR for highest engine-out NOx (fastest adsorber loading)
- Rich excursion is achieved by a combination of intake throttling and the following injection strategies:

3rd strategy investigated uses high EGR to enter LTC during rich excursion

Real-time data highlights approach of strategies

U. S. DEPARTMENT OF ENERGY

Total Reductant Moles for Strategies: Reductant Split Differs for Strategies

Engine Out Total CO-equivalent milli-moles

U. S. DEPARTMENT OF ENERGY

DEM Generates High Level of PM; P80 and LTC Strategies Produces Very Low PM

Comparison of Mass of NOx Reduced and Fuel Efficiency of NOx Reduction

Strategies not optimized for FEP, NOx, torque, etc.

Summary 1: Regeneration Exhaust Species Highly Dependent on Strategy

- DEM (Delayed Extended Main) Strategy
 - High H₂ and CO Levels
 - Best Overall NOx Reduction
 - High PM Levels
- P80 (80° After Top Dead Center) Strategy
 - High HC Levels, Lower H_2 and CO
 - NOx Reduction Performance Less than DEM
 - Lowest PM Levels
- LTC (Low Temperature Combustion) Strategy
 - Low PM Levels (less than typical lean/EGR operation)
 - Best Fuel-Efficiency for Regen (g NOx/g excess fuel)

Engineered Systems May Use Portfolio of Regeneration Strategies

General Observations Regarding N₂ Selectivity

- ORNL bench reactor results for engine-aged core sample shown
- N₂O and NH₃ are both formed during regeneration, but ...
 - <u>only</u> when NOx has been stored on the catalyst
 - > N_2 + reductant = NH_3 is not likely
- NH₃ appears <u>after</u> initial main NOx release/reduction spike

See Castoldi et. al, Cat. Today 96 (2004) 43-52 for NH₃ vs. sorbate loading

NH₃ **Production During Extended Regeneration Observed** in Engine Studies

- NH₃ and N₂O measured at tailpipe via FTIR (cycle averaged analysis)
- Experimental parameters <u>chosen</u> to enhance NH₃ formation
 - DEM, 13:1, 300°C, 60s Cycle
 - "Over-regeneration" with high NOx saturation of LNT
- Excess reductant leads to high $\rm NH_3$ emissions and reduced NOx to $\rm N_2$ reduction efficiency

Engine Regeneration Strategies Can Be Developed to Optimize N₂ Selectivity

In-Cylinder

- Comparison for (2) regeneration strategies
 - Same fuel penalty
 - Same base parameters
 - Temperature=300°C
 - Cycle period=60 sec
 - Engine Out NOx~500 ppm
 - DEM regeneration strategy
 - > 13:1 A/F target

Pulsed Strategy Gives Lower NH₃ <u>AND</u> Equivalent NOx Reduction

	Standard	Pulsed	Difference
Engine Out NOx (ppm)	472.1	457.3	-3.1%
Avg. Tailpipe NOx (ppm)	138.7	98.6	-29.0%
Avg. Tailpipe NH3 (ppm)	217	73	-66.4%
NOx Capacity (g/l)	0.311	0.317	2.2%
BSFC (lb/bhp-hr)	0.381	0.390	2.3%
Catalyst Temperature (C)	331.5	342.6	3.4%

Tailpipe O₂ Analysis Shows O₂ Purge for Pulsed Case

N₂ Selectivity Highly Dependent on Reductant:NOx Ratio

- Bench Flow Reactor Temperature Programmed Reduction (TPR) Experiments at 100,000/hr SV
- Reducing Conditions: CO and NO Into Catalyst
 - At CO:NO=1, N₂ Selectivity High N₂ Preferred
 - At CO:NO=10, N₂ Selectivity Low NH₃ Preferred
- Same Trend Holds for H₂ Reductant and NOx as NO₂
- See Josh Pihl (U. of Wis.) Poster for More Details

Theories for NH₃ Formation

- N₂ and reductant (H₂, etc.) react to form NH₃ on precious metal site during regeneration
 - No supporting data found to date
- Isocyanate surface species formed on Pt plays role in NH₃
 formation [Lesage et.al., *Phys. Chem, Chem. Phys.*, 5 (2003)]
 - 2 NCO + 3 H₂O → 2 NH₃ + 2 CO₂ + 0.5 O₂ [Rich: NCO → NH₃]
 - 2 NCO + O_2 → N_2 + 2 CO₂ [Lean: NCO → N_2]
 - Engine studies show reduced NH₃ formation via O₂ purge during regeneration
- NH₃ formed from gaseous NOx released from catalyst in reactions with surrounding reductants (H₂, CO, etc)
 - High dependence on reductant to NOx ratio observed
 - Bench reactor experiments show decay of NH₃ formation with time suggesting slow NOx release from catalyst is source of NH₃

No - Supporting Data

Supporting Data Observed

Summary 2: Strategy Dictates N₂ Selectivity

- NH₃ and N₂O can be formed during LNT regeneration
 Produced from NOx stored on catalyst
- Selectivity toward N₂ vs. NH₃ is highly dependent on ratio of reductant to NOx during regeneration
 - It is critical to match reductant to NOx ratio in dynamic process
- Strategy details critical for minimal fuel penalty and optimal NOx reduction to N₂
- Lean-rich pulsing during regeneration gives lower NH₃ formation <u>AND</u> Equivalent NOx reduction
 - Transient analysis of tailpipe O₂ with SpaciMS shows:
 - O₂ purge during regeneration (supports isocyanate and other theories)

