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• Reductant Production from In-Cylinder 
Regeneration Strategies

• N2 Selectivity of Lean NOx Trap Regeneration 
Processes
− Bench Flow Reactor Studies
− Engine Studies

Outline
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Comparison of three strategies for achieving intermittent 
rich combustion

• Two strategies employ no EGR for highest engine-out NOx 
(fastest adsorber loading)

• Rich excursion is achieved by a combination of intake 
throttling and the following injection strategies:

3rd strategy investigated uses high EGR to enter 
LTC during rich excursion
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• DEM and P80 strategies employ identical 
throttling schedule, similar reduction in 
intake air mass (reduction of AFR)
− Approach to excess fuel addition affects 

reductant species formed, concentrations

• “LTC” strategy uses EGR and nominal 
injection control for rich transition
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DEM Post80 LTC

Total Reductant Moles for Strategies: Reductant 
Split Differs for Strategies 
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Comparison of Mass of NOx Reduced and Fuel Efficiency 
of NOx Reduction
Strategies not optimized for FEP, NOx, torque, etc.
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• DEM (Delayed Extended Main) Strategy
− High H2 and CO Levels
− Best Overall NOx Reduction
− High PM Levels

• P80 (80º After Top Dead Center) Strategy
− High HC Levels, Lower H2 and CO
− NOx Reduction Performance Less than DEM
− Lowest PM Levels

• LTC (Low Temperature Combustion) Strategy
− Low PM Levels (less than typical lean/EGR operation)
− Best Fuel-Efficiency for Regen (g NOx/g excess fuel)

Summary 1: Regeneration Exhaust Species 
Highly Dependent on Strategy

Engineered Systems May Use Portfolio of Regeneration Strategies
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General Observations Regarding N2 Selectivity

• ORNL bench reactor results for engine-aged core sample shown

• N2O and NH3 are both formed during regeneration, but …
− only when NOx has been stored on the catalyst

N2 + reductant = NH3 is not likely

• NH3 appears after initial main NOx release/reduction spike
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• NH3 and N2O measured at tailpipe via FTIR (cycle averaged analysis)
• Experimental parameters chosen to enhance NH3 formation

− DEM, 13:1, 300ºC, 60s Cycle
− “Over-regeneration” with high NOx saturation of LNT

• Excess reductant leads to high NH3 emissions and reduced NOx to N2
reduction efficiency

NH3 Production During Extended Regeneration Observed 
in Engine Studies
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Engine Regeneration Strategies Can Be Developed to 
Optimize N2 Selectivity
• Comparison for (2) 

regeneration strategies
− Same fuel penalty
− Same base parameters
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Standard Pulsed Difference
Engine Out NOx (ppm) 472.1 457.3 -3.1%
Avg. Tailpipe NOx (ppm) 138.7 98.6 -29.0%
Avg. Tailpipe NH3 (ppm) 217 73 -66.4%
NOx Capacity (g/l) 0.311 0.317 2.2%
BSFC (lb/bhp-hr) 0.381 0.390 2.3%
Catalyst Temperature (C) 331.5 342.6 3.4%

Avg. Tailpipe NH3 (ppm) 217 73 -66.4%
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Tailpipe O2 Analysis Shows O2 Purge for Pulsed Case
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• Bench Flow Reactor Temperature Programmed Reduction 
(TPR) Experiments at 100,000/hr SV

• Reducing Conditions: CO and NO Into Catalyst
− At CO:NO=1, N2 Selectivity High – N2 Preferred
− At CO:NO=10, N2 Selectivity Low – NH3 Preferred

• Same Trend Holds for H2 Reductant and NOx as NO2

• See Josh Pihl (U. of Wis.) Poster for More Details

N2 Selectivity Highly Dependent on Reductant:NOx Ratio
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Theories for NH3 Formation

• N2 and reductant (H2, etc.) react to form NH3 on precious 
metal site during regeneration
− No supporting data found to date

• Isocyanate surface species formed on Pt plays role in NH3

formation [Lesage et.al., Phys. Chem, Chem. Phys., 5 (2003)]
− 2 NCO + 3 H2O 2 NH3 + 2 CO2 + 0.5 O2 [Rich: NCO NH3]
− 2 NCO + O2 N2 + 2 CO2 [Lean: NCO N2]
− Engine studies show reduced NH3 formation via O2 purge during 

regeneration

• NH3 formed from gaseous NOx released from catalyst in 
reactions with surrounding reductants (H2, CO, etc)
− High dependence on reductant to NOx ratio observed
− Bench reactor experiments show decay of NH3 formation with time 

suggesting slow NOx release from catalyst is source of NH3

No 
Supporting 
Data

Supporting 
Data
Observed
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Summary 2: Strategy Dictates N2 Selectivity

• NH3 and N2O can be formed during LNT regeneration
− Produced from NOx stored on catalyst

• Selectivity toward N2 vs. NH3 is highly dependent on 
ratio of reductant to NOx during regeneration
− It is critical to match reductant to NOx ratio in dynamic 

process

• Strategy details critical for minimal fuel penalty and 
optimal NOx reduction to N2

• Lean-rich pulsing during regeneration gives lower 
NH3 formation AND Equivalent NOx reduction
− Transient analysis of tailpipe O2 with SpaciMS shows:

O2 purge during regeneration (supports isocyanate and other 
theories)
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