Fundamental Studies of NOx Adsorber Materials

Rob Disselkamp, Do Heui Kim, Ja-Hun Kwak, Chuck Peden, Janos Szanyi, and Russ Tonkyn

Institute for Interfacial Catalysis
Pacific Northwest National Laboratory

CLEERS WORKSHOP 8
May 18, 2005
Funding – DOE/OFCVT
Studies Performed to Date

- **Studies of Ba loading:**
 - Morphology of the BaO storage material
 - Optimum morphology
 - Need for ‘contact’ with Pt?
 - What limits time to initial NOx ‘breakthrough’?

- **Variation of catalyst preparation:**
 - Can time to ‘breakthrough’ be extended?

- **Catalyst composition:**
 - Variation in the storage material – BaO, CaO, SrO, MgO
 - Variation in the support material – acidic, basic, ‘neutral’

- **Mechanistic studies:**
 - Reductive regeneration: nitrogen-balance experiments with production catalysts
 - NO oxidation: Pt particle-size dependence and deactivation
Methods

- **Synchrotron Temperature Programmed-XRD**: catalyst structural changes *(with Jon Hanson NSLS/Brookhaven National Lab)*
- **Transmission electron microscopy (TEM/EDX)**: morphological changes
- **FTIR and NMR Spectroscopies, and Temperature-programmed desorption (TPD)**: surface chemistry
- **Lab Reactor**: performance measurements, kinetics and mechanisms
Evolution of LNT material morphology during preparation and use.

Do Heui Kim, Ja-Hun Kwak, Chuck Peden, Janos Szanyi
Pacific Northwest National Laboratory
Richland, WA 99352

Will very briefly show select pieces of data from these studies.
Quantification of NOx uptake reveals small percentage of BaO used for storage

250 °C

Assume $\text{Ba(NO}_3\text{)}_2$ formation

Why so little?
Calcination of 20%-BaO/Al$_2$O$_3$: TP-XRD

- Ba(NO$_3$)$_2$ completely decomposes at ~575 °C
- Weak BaO lines form (nano particle formation)

Experiments performed at the National Synchrotron Light Source in collaboration with Jon Hanson, Brookhaven National Laboratory
Ba(NO$_3$)$_2$ decomposition on Al$_2$O$_3$: TP-XRD

Integrated area (11.6°, a.u.)

Intensity

Temperature (°C)

2Theta (°)

Particle size (Å)

<particle size>~62nm

Pacific Northwest National Laboratory
...delivering breakthrough science and technology

Institute for Interfacial Catalysis
20%-BaO/Al$_2$O$_3$, Calcined at 500 °C: TEM and EDS

Well dispersed BaO particles all over the Al$_2$O$_3$ support surface.

EDS (Atomic%)
Al:83 Ba:17
82 18
The morphology of BaO/Al$_2$O$_3$ as synthesized

Large Ba(NO$_3$)$_2$ crystallites

BaO nanoparticles on a BaO monolayer
Lean-NOx Trap (LNT) morphology changes shown in this ‘movie’ are based on the results of combined transmission electron microscopy (TEM), temperature-programmed desorption (TPD), FTIR and NMR spectroscopy, and synchrotron TP-XRD experiments.
NO and NO$_2$ Desorption From BaO/Al$_2$O$_3$ Following NO$_2$ Adsorption at 300K

Signatures of two ‘forms’ of nitrate?

By combining FTIR and NO$_2$ TPD:

- **420 °C**: decomposition of bidentate nitrates
 \[\text{Ba(NO}_3\text{)}_2 \rightarrow \text{BaO} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2 \]

- **500 °C**: decomposition of ionic nitrates
 \[\text{Ba(NO}_3\text{)}_2 \rightarrow \text{BaO} + 2\text{NO} + \frac{3}{2}\text{O}_2 \]
Distribution of NO and NO$_2$ Desorption Features Very Sensitive to BaO Loading

- Al_2O_3: bidentate nitrates
- 2%-BaO/Al_2O_3: bidentate nitrates (BN)
- 8%-BaO/Al_2O_3: bidentate nitrates (BN) + ionic nitrates (IN) [BN$>$IN] (very little NO$_2$ adsorption on BaO-free Al_2O_3)
- 20%-BaO/Al_2O_3: bidentate and ionic nitrates [BN$<$IN] (virtually no Al_2O_3 surface is BaO-free)
Nitric oxide (NO) and nitric oxide (NO₂) adsorption on 8%- and 20%-BaO/Al₂O₃ catalysts at 300K.

Ionic (IN) (bulk) and bridging (BN) (surface) nitrates are observed on both BaO/Al₂O₃ catalysts. The ratio of bridging/ionic nitrates varies with BaO loading. (Al₂O₃-bound nitrates (AN) are also present.)
NO$_2$ and NO$_2$+H$_2$O on BaO/Al$_2$O$_3$:
15N Solid State NMR

Three types of nitrates:
- on alumina (easily removed by H$_2$O);
- Surface nitrates (peak sharpens with H$_2$O addition);
- bulk-like nitrates (unchanged by H$_2$O addition)
Heat

NO + \(\frac{1}{2} \) O

Ba(NO\textsubscript{3})\textsubscript{2} \\

Al\textsubscript{2}O\textsubscript{3}

Heat

ionic Nitrates (bulk)

Bridging Nitrates (Surface)

Ba(NO\textsubscript{3})\textsubscript{2} \\

Al\textsubscript{2}O\textsubscript{3} \\

\(\text{BaO} \) \\

\(\text{Al}_2\text{O}_3 \)
While SO₂ monotonically decreased the desorption from ‘bulk’ nitrates, NO₂ adsorption on ‘monolayer’ nitrates is unaffected at low sulfur levels. In a similar way, performance degradation is minimal at low sulfur exposures but progresses rapidly once begun.
Mechanistic Studies During Rich Regeneration: Nitrogen-Balance Experiments

R.G. Tonkyn, R.S. Disselkamp, C.H.F. Peden
Pacific Northwest National Laboratory
Richland, WA 99352
Experimental Details

- Quartz reactor: 1”OD x 7/8” id; Temp. control via programmable furnace
- FTIR: 2 meter, 200 cc cell at 50 °C, 1 atm
 --- NO, NO₂, N₂O, NH₃, CO, CO₂, H₂O
 Repeat time as fast as 2 seconds
- Micro GC with 3 independent columns;
 Used for detection of N₂, O₂ and H₂
 10-20 lean-rich cycles needed to collect GC data
- Chemiluminescent NOx Analyzer

Standard Gases: 280 ppm NO
10% CO₂
0 – 25 ppm SO₂ (to date, none used)
0-2% H₂O (to date, none used)

Lean Phase: 4-8% O₂
Rich Phase: 4% CO or 1.3% H₂

Flow: 1-3 slm over (3-7 cc) catalyst brick – Space velocity: 8,000-50,000/Hr
3 way solenoid valves – lean and rich gas mixtures always flowing
Lean NOx Trap Catalysis System

O₂
He

He CO₂ NO SO₂ H₂O

H₂ CO C₃H₆ He

Exhaust

Bypass

Furnace

FTIR

2.5 liter Cyl.

Micro GC

CLA NOx

Exhaust

3 way Solenoid valves control lean/rich flows
Testing ‘Degreened’ UMICOR Monolith

Conditions:

2 SLM flow over 6.9 cc catalyst brick (2.08 cm long; 2.06 cm dia)
SV ~ 17000/Hr

Temperature ~250 °C

Gases: He + 280 ppm NO flowing at all times; 70 seconds lean: 4% O₂
Variable rich cycle (2-20 seconds): 1.3% H₂
No water added, but it is formed from H₂ oxidation during the rich cycle
Umicore GDI LNT: ORNL Elemental Screening Results

• Green
 – Washcoat:
 • Zr, Ce
 • La additive/impurity
 – Precious Metals:
 • Pt, Pd, Rh in descending concentration
 – Sorbate (Group I, II):
 • Ba major
 • Sr, Na detected as minors/impurities

• Degreened: 16 hrs, 700ºC
 – Washcoat:
 • Zr, Ce
 • La additive/impurity
 – Precious Metals:
 • Pt, Pd, Rh in descending concentration
 – Sorbate (Group I, II):
 • Ba major
 • Sr, K, Na detected as minors/impurities

Bottom Line: Umicore LNT chemistry is similar to Three-Way Catalyst with Barium for NOx storage
Waited until consistent results were obtained in FTIR data
Example ‘steady-state’ data

3 Seconds Rich

NO N2O NO2 NH3

Time

Example Example ‘steadystate’ data
3-second rich period insufficient to regenerate LNT

- No NH$_3$ formation
- N$_2$O formed early in the rich cycle
- Significant NOx (NO and NO$_2$) ‘puffs’ when cycled rich
~6-8 second rich period optimum for regeneration

- No NOx (NO and NO₂) breakthrough!
- N₂O formed early in the rich cycle
- Small amount of NH₃ formation late in the cycle
Longer rich periods result in significant NH$_3$ formation.
N$_2$ readily detected and quantified by GC

3 Seconds Rich

FWHM ~2.7 Seconds

Pacific Northwest National Laboratory
...delivering breakthrough science and technology
\(\text{N}_2 \) formation occurs early in the rich cycle, before \(\text{NH}_3 \)
N_2 formation maximizes at ~5-6 seconds

N2 Data; 2 to 20 s Rich/66 Lean
2slm; 6.9 cc degr. UMICOR Monolith
4%O2; 1.3%H2; 280 ppm NO; 250 C
Nitrogen balance > 90%

- NOx conversion reaches 90% for 6 seconds.
- NH$_3$ only becomes a significant product more rich times > 8s.
- N$_2$O ~5-10% of NO-in and insensitive to rich time.
- Reductant (H$_2$) breakthrough at >10 s rich.

<table>
<thead>
<tr>
<th>Catalyst Out</th>
<th>Seconds Rich</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>13</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>N$_2$ ppm-sec</td>
<td></td>
<td>1277</td>
<td>3118</td>
<td>5450</td>
<td>7886</td>
<td>8736</td>
<td>8815</td>
<td>9020</td>
<td>9349</td>
<td>9017</td>
<td>8733</td>
</tr>
<tr>
<td></td>
<td>µMol N out</td>
<td>3.8</td>
<td>9.3</td>
<td>16.2</td>
<td>23.5</td>
<td>26.0</td>
<td>26.2</td>
<td>26.8</td>
<td>27.8</td>
<td>26.8</td>
<td>26.0</td>
</tr>
<tr>
<td></td>
<td>% NO in</td>
<td>13.4</td>
<td>32.1</td>
<td>55.4</td>
<td>79.2</td>
<td>87.3</td>
<td>87.2</td>
<td>88.1</td>
<td>89</td>
<td>83</td>
<td>74.4</td>
</tr>
<tr>
<td>NO ppm-sec</td>
<td></td>
<td>6273</td>
<td>4428</td>
<td>2468</td>
<td>214</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>µMol N out</td>
<td>9.3</td>
<td>6.6</td>
<td>3.7</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>% NO in</td>
<td>32.8</td>
<td>22.7</td>
<td>12.5</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NO$_2$ ppm-sec</td>
<td></td>
<td>8052</td>
<td>6232</td>
<td>3982</td>
<td>683</td>
<td>236</td>
<td>54</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>µMol N out</td>
<td>12.0</td>
<td>9.3</td>
<td>5.9</td>
<td>1.0</td>
<td>0.4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>% NO in</td>
<td>42.1</td>
<td>31.9</td>
<td>20</td>
<td>3.4</td>
<td>1.2</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N$_2$O ppm-sec</td>
<td></td>
<td>368</td>
<td>565</td>
<td>803</td>
<td>999</td>
<td>930</td>
<td>752</td>
<td>806</td>
<td>718</td>
<td>727</td>
<td>597</td>
</tr>
<tr>
<td></td>
<td>µMol N out</td>
<td>0.5</td>
<td>0.8</td>
<td>1.2</td>
<td>1.5</td>
<td>1.4</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>% NO in</td>
<td>3.9</td>
<td>5.8</td>
<td>8.1</td>
<td>9.9</td>
<td>9.2</td>
<td>7.3</td>
<td>7.8</td>
<td>6.7</td>
<td>6.8</td>
<td>5.0</td>
</tr>
<tr>
<td>NH$_3$ ppm-sec</td>
<td></td>
<td>36</td>
<td>37</td>
<td>83</td>
<td>29</td>
<td>115</td>
<td>90</td>
<td>356</td>
<td>1753</td>
<td>1926</td>
<td>3669</td>
</tr>
<tr>
<td></td>
<td>µMol N out</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>2.6</td>
<td>2.9</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>% NO in</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.6</td>
<td>0.4</td>
<td>1.7</td>
<td>8.2</td>
<td>8.7</td>
<td>15.3</td>
</tr>
<tr>
<td>Sum % Nox Converted</td>
<td></td>
<td>17.5</td>
<td>38.1</td>
<td>63.9</td>
<td>89.2</td>
<td>97.1</td>
<td>94.9</td>
<td>97.6</td>
<td>103.9</td>
<td>98.5</td>
<td>94.7</td>
</tr>
<tr>
<td>% N recovered</td>
<td></td>
<td>92</td>
<td>93</td>
<td>96</td>
<td>94</td>
<td>98</td>
<td>95</td>
<td>98</td>
<td>104</td>
<td>99</td>
<td>95</td>
</tr>
<tr>
<td>H$_2$O ppm-sec</td>
<td></td>
<td>31950</td>
<td>43670</td>
<td>52680</td>
<td>61080</td>
<td>69400</td>
<td>76790</td>
<td>83720</td>
<td>97180</td>
<td>98050</td>
<td>122000</td>
</tr>
<tr>
<td>% of total H$_2$ in</td>
<td></td>
<td>123</td>
<td>112</td>
<td>101</td>
<td>94</td>
<td>89</td>
<td>84</td>
<td>81</td>
<td>75</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td>H$_2$ ppm-sec</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12423</td>
<td>94400</td>
<td>0</td>
</tr>
<tr>
<td>% H$_2$ in</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>36</td>
</tr>
</tbody>
</table>
Distribution of N-containing species with varying rich times

2-20_Sec_Nresults--%
Initial Experiments: Compare Product Distributions with H_2 versus CO

- Used 7.2 cc LNT brick (commercial LNT catalyst from a 2004 Ford Mondeo 1.8 SCI – obtained from John Hoard and George Graham, Ford Scientific Research Labs)
- 1 slm for ~ 18000/Hr over Catalyst at 210 °C
- Vary reductant — H_2 or CO
- Input 500 ppm NO, look for N_2
- Dropped O_2 to 2% for simpler N_2 detection
Nitrogen Balance, Third cycle

- Detected N_2 — 60% of NOx over cycle to N_2
- Late NH_3 production as N_2 production drops
- No NOx breakthrough during 'steady-state' reduction phase

<table>
<thead>
<tr>
<th>Lean</th>
<th>Rich</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx in: 6123 ppm-min</td>
<td>NOx in: 6123 ppm-min</td>
</tr>
<tr>
<td>NO out: 253 ppm-min (4%)</td>
<td>NO out: 253 ppm-min (4%)</td>
</tr>
<tr>
<td>N2O out: 237 ppm-min (8%)</td>
<td>N2O out: 237 ppm-min (8%)</td>
</tr>
<tr>
<td>NH3 out: 942 ppm-min (15%)</td>
<td>NH3 out: 942 ppm-min (15%)</td>
</tr>
<tr>
<td>N2 out: 3694 ppm-min (60%)</td>
<td>N2 out: 3694 ppm-min (60%)</td>
</tr>
</tbody>
</table>

Overall: 88% N recovery

210C; 1slm 7.4cm2~(8100/Hr); 480ppm NO in; 10%CO2; + He 2%O2/1.3%H2 lean/rich
Nitrogen Balance—Third Cycle

- Small N₂ signal—only spike on Rich-to-Lean transiton
- Much lower NOx conversion with CO vs H₂ as reductant

Graph Details:
- NOx in 6422 ppm-min
- NO out: 2755 (43%)
- NO₂ out: 43 (0.7%)
- N₂O out: 922 (29%)
- N₂ out: 357 (11%)

84% N recovery

Conditions:
- 210C; 1slm 7.4cm³~(8100/Hr)
- 480ppm NO in; 10%CO₂; + He
- 8%O₂/4%CO lean/rich

Institute Logos:
- Pacific Northwest National Laboratory
- Institute for Interfacial Catalysis
Summary and Conclusions

• The morphology of BaO/Al$_2$O$_3$ LNT materials is remarkably dynamic during NOx storage and reduction. A ‘monolayer’ of Ba(NO$_3$)$_2$ forms on the alumina surface in addition to large bulk Ba(NO$_3$)$_2$ particles.

• As the amount of barium oxide increases, the NOx uptake also increases. However, a significant fraction of the BaO sites (up to 80%) do not take part in the formation of Ba(NO$_3$)$_2$ even after uptake for extended periods.

• and NMR spectroscopies display features that correlate well with these two ‘forms’ of Ba(NO$_3$)$_2$. These two forms also appear to decompose in two distinct temperature regimes and give rise to two different desorption products.

• Early stages of sulfur adsorption appears to effect ‘bulk’ uptake first before ‘monolayer’ uptake.

• Nitrogen balance experiments show the distribution of N-containing products during rich regeneration. While N$_2$ and N$_2$O form early in the rich phase, extended rich periods lead to the production of significant quantities of NH$_3$. Marked differences are observed in the products produced during rich regeneration of production LNTs when comparing reduction by H$_2$ and CO.
Future Work

- **BaO morphology studies**
 - Effects of CO$_2$ and/or H$_2$O on morphology changes during NOx uptake and release. TP-XRD studies to be performed at National Synchrotron Light Source (NSLS) this summer.
 - In-situ TEM studies to watch morphology changes in real time.
 - Effects of additional catalyst components (e.g., ceria as used in CLEERS Umicore material), and alternative support materials (e.g., MgO and MgAl$_2$O$_4$).
 - Role of Pt/BaO interface for optimum NOx storage.

- **Studies of CLEERS Umicore samples**
 - CLEERS performance protocol experiments
 - Additional nitrogen balance experiments
 - Varying reductant (1 or more of H$_2$, CO, and/or C$_3$H$_6$)
 - Add in CO$_2$ and H$_2$O
 - Varying lean times
 - Varying temperatures