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Studies Performed to Date
• Studies of Ba loading:

– Morphology of the BaO storage material
– Optimum morphology
– Need for ‘contact’ with Pt?
– What limits time to initial NOx ‘breakthrough’?

• Variation of catalyst preparation:
– Can time to ‘breakthrough’ be extended?

• Catalyst composition:
– Variation in the storage material – BaO, CaO, SrO, MgO
– Variation in the support material – acidic, basic, ‘neutral’

• Mechanistic studies:
– Reductive regeneration:  nitrogen-balance experiments with 

production catalysts
– NO oxidation:  Pt particle-size dependence and deactivation



Methods

• Synchrotron Temperature Programmed-
XRD:  catalyst structural changes (with 
Jon Hanson NSLS/Brookhaven National 
Lab)

• Transmission electron microscopy 
(TEM/EDX): morphological changes

• FTIR and NMR Spectroscopies, and 
Temperature-programmed desorption
(TPD): surface chemistry

• Lab Reactor: performance 
measurements, kinetics and mechanisms

Scanning Electron MicroscopeScanning Electron MicroscopeScanning Electron MicroscopeScanning Electron Microscope
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Evolution of LNT material 
morphology during 

preparation and use.
Do Heui Kim, Ja-Hun Kwak,
Chuck Peden, Janos Szanyi

Pacific Northwest National Laboratory
Richland, WA  99352

Will very briefly show select pieces of data 
from these studies.
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Quantification of NOx uptake reveals 
small percentage of BaO used for storage

Why so little?Assume Ba(NO3)2 formation



Calcination of 20%-BaO/Al2O3: TP-XRD

•Ba(NO3)2 completely 
decomposes at ~575 ºC

•Weak BaO lines form 
(nano particle formation)

Experiments 
performed at the 

National Synchrotron 
Light Source in 

collaboration with Jon 
Hanson, Brookhaven 
National Laboratory



Ba(NO3)2 decomposition on Al2O3: TP-XRD
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20%-BaO/Al2O3, Calcined at 500 °C:
TEM and EDS

EDS (Atomic%)
Al:83    Ba:17

82          18

Well dispersed 
BaO particles 
all over the 
Al2O3 support 
surface.

EDS(Atomic %)
Al:64    Ba:36

EDS(Atomic %)
Al:98    Ba: 2    



The morphology of BaO/Al2O3
as synthesized

Heat

Large Ba(NO3)2
crystallites

BaO nanoparticles
on a BaO monolayer

Al2O3

Al2O3



Play Movie
MorphCatalyst.wmv

LeanLean--NOxNOx Trap (LNT) morphology changes shown in this Trap (LNT) morphology changes shown in this 
‘‘moviemovie’’ are based on the results of combined are based on the results of combined 

transmission electron microscopy (TEM), temperaturetransmission electron microscopy (TEM), temperature--
programmed programmed desorptiondesorption (TPD), FTIR and NMR (TPD), FTIR and NMR 

spectroscopy, and synchrotron TPspectroscopy, and synchrotron TP--XRD experiments.XRD experiments.



NO and NONO and NO22 DesorptionDesorption From BaO/AlFrom BaO/Al22OO33
Following NOFollowing NO22 Adsorption at 300KAdsorption at 300K
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Signatures of 
two ‘forms’ of 

nitrate?
F. Prinetto et al., JPC B 105(2001) 12732.

By combining FTIR and NO2 TPD:

420 oC: decomposition of bidentate nitrates

Ba(NO3)2 BaO + 2NO2 + 1/2O2

500 oC: decomposition of ionic nitrates

Ba(NO3)2 BaO + 2NO + 3/2O2

“Bidentate”
nitrates 
(BN)

“Ionic”
nitrates (IN)



Distribution of NO and NODistribution of NO and NO22 DesorptionDesorption
Features Very Sensitive to Features Very Sensitive to BaOBaO LoadingLoading
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• Al2O3: bidentate nitrates
• 2%-BaO/Al2O3:

bidentate nitrates (BN)
• 8%-BaO/Al2O3:

bidentate nitrates (BN) + 
ionic nitrates (IN) 
[BN>IN] (very little NO2
adsorption on BaO-free Al2O3)

• 20%-BaO/Al2O3:
bidentate and ionic 
nitrates [BN<IN] (virtually 
no Al2O3 surface is BaO-free)

Ba(NO3)2 →
BaO + 2 NO2

+ 1/2 O2

Ba(NO3)2 →
BaO + 2 NO 

+ 3/2 O2



NONO22 adsorption on 8%adsorption on 8%--,,
and 20%and 20%--BaO/AlBaO/Al22OO3 3 at 300Kat 300K
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Ionic (IN) (bulk) and bridging (BN) (surface) nitrates are observed on both 
BaO/Al2O3 catalysts.  The ratio of bridging/ionic nitrates varies with BaO

loading.  (Al2O3-bound nitrates (AN) are also present.)
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NO2 and NO2+H2O on BaO/Al2O3: 
15N Solid State NMR
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Three types of 
nitrates:

• on alumina (easily removed by H2O);
• Surface nitrates (peak sharpens with H2O addition);
• bulk-like nitrates (unchanged by H2O addition)
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Sulfation followed by in situ NO2 TPD

0 100 200 300 400 500 600 700
0

200

400

600

800

1000

1200

1400

1600

1800

  NO    NO2
  0 g/L
  1 g/L
  2 g/L
  5 g/L
  10 g/L

N
O

x 
co

nc
en

tra
tio

n 
(p

pm
)

Temperature (oC)

Pt-Ba/Al2O3 LNT

While SO2 monotonically decreased the desorption from ‘bulk’ nitrates, NO2
adsorption on ‘monolayer’ nitrates is unaffected at low sulfur levels.  In a 
similar way, performance degradation is minimal at low sulfur exposures but 
progresses rapidly once begun. 
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Mechanistic Studies During 
Rich Regeneration:  Nitrogen-

Balance Experiments

R.G. Tonkyn, R.S. Disselkamp, C.H.F. Peden 
Pacific Northwest National Laboratory

Richland, WA  99352



Experimental DetailsExperimental Details

Standard Gases:   280 ppm NO
10% CO2
0 – 25 ppm SO2 (to date, none used)
0-2% H2O (to date, none used)

Lean Phase: 4-8% O2
Rich Phase: 4% CO or 1.3% H2

Flow:  1-3 slm over (3-7 cc) catalyst brick – Space velocity:  8,000-50,000/Hr
3 way solenoid valves – lean and rich gas mixtures always flowing

• Quartz reactor: 1”OD x 7/8” id; Temp. control via programmable furnace
• FTIR:  2 meter, 200 cc cell at 50 oC, 1 atm

--- NO, NO2, N2O, NH3, CO, CO2, H2O ….
Repeat time as fast as 2 seconds

• Micro GC with 3 independent columns;  
Used for detection of N2, O2 and H2
10-20 lean-rich cycles needed to collect GC data

• Chemiluminescent NOx Analyzer



He
CO2
NO
SO2
H2O

He
CO2
NO
SO2
H2O

O2
He

H2
CO
C3H6
He

Exhaust

Exhaust

Furnace

Bypass

Micro GC

FTIR

Exhaust

X
X

X

X

X
X

X
X

2.5 liter Cyl.

3 way Solenoid valves
control lean/rich flows

CLA NOx

X
X

X X
X

Lean NOx Trap Catalysis SystemLean NOx Trap Catalysis System



Testing ‘Degreened’ UMICOR Monolith
Conditions:

2 SLM flow over 6.9 cc catalyst brick (2.08 cm long; 
2.06 cm dia)

SV ~ 17000/Hr

Temperature ~250 °C

Gases: He + 280 ppm NO flowing at all times;
70 seconds lean:  4% O2
Variable rich cycle (2-20 seconds):  1.3% H2
No water added, but it is formed from H2
oxidation during the rich cycle



UmicoreUmicore GDI LNT:GDI LNT:
ORNL Elemental Screening ResultsORNL Elemental Screening Results

• Green
– Washcoat: 

• Zr, Ce
• La additive/impurity

– Precious Metals: 
• Pt, Pd, Rh in descending 

concentration
– Sorbate (Group I, II):

• Ba major
• Sr, Na detected as 

minors/impurities

• Degreened: 16 hrs,700ºC
– Washcoat: 

• Zr, Ce
• La additive/impurity

– Precious Metals: 
• Pt, Pd, Rh in descending 

concentration
– Sorbate (Group I, II):

• Ba major
• Sr, K, Na detected as 

minors/impurities

Bottom Line: Umicore LNT chemistry is similar to 
Three-Way Catalyst with Barium for NOx storage
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Seconds Rich 2 3 4 5 6 7 8 10 13 20
Catalyst Out

N2 ppm-sec 1277 3118 5450 7886 8736 8815 9020 9349 9017 8733
µMol N out 3.8 9.3 16.2 23.5 26.0 26.2 26.8 27.8 26.8 26.0
% NO in 13.4 32.1 55.4 79.2 87.3 87.2 88.1 89 83 74.4

NO ppm-sec 6273 4428 2468 214 0 0 0 3 8 0
µMol N out 9.3 6.6 3.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0
% NO in 32.8 22.7 12.5 1.1 0 0 0 0 0 0

NO2 ppm-sec 8052 6232 3982 683 236 54 1 0 0 0
µMol N out 12.0 9.3 5.9 1.0 0.4 0.1 0.0 0.0 0.0 0.0
% NO in 42.1 31.9 20 3.4 1.2 0.3 0 0 0 0

N2O ppm-sec 368 565 803 999 930 752 806 718 727 597
µMol N out 0.5 0.8 1.2 1.5 1.4 1.1 1.2 1.1 1.1 0.9
% NO in 3.9 5.8 8.1 9.9 9.2 7.3 7.8 6.7 6.8 5

NH3 ppm-sec 36 37 83 29 115 90 356 1753 1926 3669
µMol N out 0.1 0.1 0.1 0.0 0.2 0.1 0.5 2.6 2.9 5.5
% NO in 0.2 0.2 0.4 0.1 0.6 0.4 1.7 8.2 8.7 15.3

Sum % Nox Converted 17.5 38.1 63.9 89.2 97.1 94.9 97.6 103.9 98.5 94.7
% N recovered 92 93 96 94 98 95 98 104 99 95

H2O ppm-sec 31950 43670 52680 61080 69400 76790 83720 97180 98050 122000
% of total H2 in 123 112 101 94 89 84 81 75 58 47

H2 ppm-sec 0 0 0 0 0 0 0 0 12423 94400
% H2 in 0 0 0 0 0 0 0 0 7 36

Nitrogen balance > 90%Nitrogen balance > 90%
• NOx conversion 

reaches 90% 
for 6 seconds.

• NH3 only 
becomes a 
significant 
product more 
rich times > 8s.

• N2O ~5-10% of 
NO-in and 
insensitive to 
rich time.

• Reductant (H2) 
breakthrough 
at >10 s rich.
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Initial Experiments:  Compare Product 
Distributions with H2 versus CO

• Used 7.2 cc LNT brick (commercial LNT 
catalyst from a 2004 Ford Mondeo 1.8 SCI –
obtained from John Hoard and George 
Graham, Ford Scientific Research Labs)

• 1 slm for ~ 18000/Hr over Catalyst at 210 oC

• Vary reductant — H2 or CO

• Input 500 ppm NO, look for N2

• Dropped O2 to 2% for simpler N2 detection



Nitrogen Balance, Third cycle

• Detected N2 —
60% of NOx over 
cycle to N2

• Late NH3
production as N2
production drops

• No NOx break-
through during 
‘steady-state’
reduction phase0
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Nitrogen Balance—Third Cycle

• Small N2 signal—
only spike on 
Rich-to-Lean 
transiton

• Much lower NOx 
conversion with 
CO vs H2 as 
reductant
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Summary and Conclusions
• The morphology of BaO/Al2O3 LNT materials is remarkably dynamic during 

NOx storage and reduction.  A ‘monolayer’ of Ba(NO3)2 forms on the alumina 
surface in addition to large bulk Ba(NO3)2 particles.

• As the amount of barium oxide increases, the NOx uptake also increases. 
However, a significant fraction of the BaO sites (up to 80%) do not take part in 
the formation of Ba(NO3)2 even after uptake for extended periods.

• and NMR spectroscopies display features that correlate well with these two 
‘forms’ of Ba(NO3)2.  These two forms also appear to decompose in two 
distinct temperature regimes and give rise to two different desorption
products.

• Early stages of sulfur adsorption appears to effect ‘bulk’ uptake first before 
‘monolayer’ uptake.

• Nitrogen balance experiments show the distribution of N-containing products 
during rich regeneration.  While N2 and N2O form early in the rich phase, 
extended rich periods lead to the production of significant quantities of NH3.  
Marked differences are observed in the products produced during rich 
regeneration of production LNTs when comparing reduction by H2 and CO.



Future Work
BaO morphology studies
- Effects of CO2 and/or H2O on morphology changes during NOx

uptake and release.  TP-XRD studies to be performed at 
National Synchrotron Light Source (NSLS) this summer.

- In-situ TEM studies to watch morphology changes in real time.
- Effects of additional catalyst components (e.g., ceria as used in 

CLEERS Umicore material), and alternative support materials 
(e.g., MgO and MgAl2O4).

- Role of Pt/BaO interface for optimum NOx storage.

Studies of CLEERS Umicore samples
- CLEERS performance protocol experiments
- Additional nitrogen balance experiments

- Varying reductant (1 or more of H2, CO, and/or C3H6)
- Add in CO2 and H2O
- Varying lean times
- Varying temperatures


