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Background 

• Urea SCR offers viable alternative for diesel 
NOx control
− NOx conversion is high; infrastructure issues being 

resolved
• Heavy-duty vehicles run at higher loads and 

temperatures >250 °C where urea 
decomposition is rapid on catalyst

• Light-duty temperatures  (150 °C – 300 °C) 
require changes to traditional vanadia based.  
Zeolitic system provided by Umicore
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Ideally, urea decomposes to form 
ammonia, 

which then reduces NOX to N2.

2 NH3 + NO + NO2 ⇔ 2 N2 + 3 H2O
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Urea decomposition can lead to the 
formation of several  undesirable species.
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Several reaction pathways available 
for NH3 and NOx…f(T), SV, NO:NO2

2NH3 + 2NO2 → NH4NO3 + N2 + 3 H2O
NH4NO3 → NH3 + HNO3

2HNO3 + NO → 3 NO2 + H2O

Ammonium nitrate formation, 
decomposition, and 
subsequent reaction with 
nitric oxide.
Important when T< = 200 C.

Conversion of NO2 to N2O.
Important when NO2 / NO > 1.

6NH3 + 8 NO2 → 7 N2O + 9H2O
4 NH3 + 4 NO2 + O2 → 4N2O + 6 H2O

So… significant methods development research required to understand the sample and 
measurment techniques for urea decomposition products
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Last year at CLEERS …”burn off” of urea found to be f(T),
evidence of storage compound releasing NH3

• Hydrolysis kinetics on 
surfaces still need to 
be understood. Will 
affect the length of the 
catalyst that is used 
only for 
thermohydrolysis

• Understanding 
NH4NO3 ⇔ NH3 + HNO3 

and further 
decomposition of nitric 
acid is likely key to low 
T behavior
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Current study:  
Understanding low-temperature urea 

behavior is key to developing effective and 
efficient SCR systems for light-duty vehicles.

• WHY?
• Most models and bench reactor studies assume complete urea 

decomposition upstream of the SCR catalyst.
− ammonia used as reductant
− May lead to inefficient sizing or urea injection strategies.

• Device models and model-based controls for SCR-systems 
need to account for many processes, including urea 
decomposition and storage.
− Avoiding under/over injection of urea.
− Sizing devices for specific applications.
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Experimental:  emphasize light duty 
conditions

• SCR temperatures less than 300 °C.
• Stoichiometric urea injection based on total NOx
• 200 ppm NOX at SCR inlet.
• Space Velocity of 25,000 hr-1 (based on 2.6 liter monolith).
• Investigate urea decomposition (if any) upstream of SCR 

catalyst.
• Analyze SCR performance and exhaust products exiting 

undersized monoliths to elucidate decomposition effects.

• Rinse Experiments:  Expose clean monoliths until steady-state 
is reached  ~30 min.  
− 205 °C and 180 °C experiments
− Rinsed exposed monoliths with buffer solution 
− Analyzed with capillary electrophoresis 
− not quantitative
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Oxidation 
catalyst 
(beneath 
engine)

Engine

Urea
Injector

SCR catalyst
76- or 152-mm length

To 
exhaust 

stack

Exhaust flow rate and NOX concentration were held constant while 
varying exhaust temperature by manipulating the engine EGR rate,
boost pressure, and fuel rate.
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Full-size catalyst monoliths provided by an industry 
partner were utilized for this study.

• Pre-Oxidation Catalyst
− 144 mm diameter x 152 mm long                  

(5.66” x 6.00”) cylindrical monolith.

• SCR Catalysts
− 144 mm diameter x 152 mm long                  

(5.66” x 6.00”) cylindrical monolith.
− 144 mm diameter x 76 mm long                     

(5.66” x 3.00”) cylindrical monolith.
− Non-vanadium zeolite formulation.

• Canned for modular installation and measurement access to the rear 
of the monolith.

• Catalysts were de-greened in exhaust for several hours prior to use, 
but should not be considered aged significantly.
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SCR-inlet NO2/NO ratios showed an over-oxidized 
condition at temperatures over 200 °C.
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Apparent NOX conversions were high given 
the relatively small size of the SCRs. 
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• Highest conversion was for the species of lower concentration. (Dominated by fast reaction.)*
• Highest overall conversion occurred when NO2 / NO ~1, despite low temperature.
• Longer SCR shows improved conversion of the species of lower concentration.
•* Below 200 °C NO2 reduction is favored for both SCRs.  This is caused by ammonium nitrate 
formation.
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Urea and urea decomposition products were 
difficult to find in the exhaust

• FTIR measurements of NH3 required reducing filter 
temperature to 60 °C to avoid false-positives 
upstream of SCRs.

• NH3 measurements upstream of the SCRs showed 
very low urea decomposition in the exhaust stream.  

• Quantification of urea decomposition products 
downstream of the SCRs was limited to NH3.
− Several impinger-collection and analysis methods 

were explored.
− Difficulty is isolating species and preventing 

subsequent reactions.
− No reliable detections of urea or isocyanic acid.
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Steady-state temperature sweeps showed that the 
152-mm SCR produced more N2O above 200 °C.
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NH3 emissions were observed since NOX
reduction was not complete for either SCR.
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HCN emissions were observed to be 
proportional to NH3 emissions.
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Transient Studies with Clean 
Catalyst

205 C
FTIR started when urea injection starts

Experiments with urea and NH3
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Transient experiments with both urea and NH3
injection show relatively long period to reach steady-

state.
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NH3 slip was observed to occur sooner when urea 
was injected than when NH3 was injected.
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N2O emissions were higher with urea injection 
than with NH3 injection.
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HCN emissions were proportional to and 
simultaneous with NH3 emissions.
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Urea decomposition products act as storage on 
the catalyst monolith
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The results of the study support several conclusions.

• Urea decomposition on the catalyst surface causes:
− Lower NH3 storage for first 76-mm compared                           

with the next 76-mm of monolith.
− Higher selectivity to N2O in overoxidized conditions                  

for both the first and second 76-mm of monolith.
− Higher emissions of HCN during NH3-slip conditions.

• Very small volume SCRs can have very high NOXconversion if some issues could be overcome:
− Urea decomposition upstream of SCR.
− NO2 / NO ratio control close to optimum value.
− Improved models / controls for urea dosing rate.
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Conclusions, continued

• Implications of catalyst rinsing experiment very 
important
− very little slip of decompostion products 

detected
− Shift at higher temperature to cyanuric

interesting
• cyanuric is an SCR reagent!

− Unknown likely an amino compound
− the wrong amount of reduction can lead to 

refractory complexes – like 
melamine:cyanurate

− modeling these reactions will be important to 
reduce size and prolong life.
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