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Background
• LNTs inhibited by poisoning agents

− Lube phosphorous
− Sulfur inhibition and its high temperature removal 

• Need a better understanding of the deactivation 
mechanisms that result from treating catalyst
− What impact do oil-born agents have on catalysts?
− What temperature does de-S occur?
− When is the catalyst morphology affected?
− How does the material impact the chemistry? 

• Transfer this information to teams to:
− improve the material
− improve the desulfation methods
− improve simulation of the processes
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Approach
• Effort is pre-competitive

− Use model catalysts for majority of study
− Allows sharing of all information
− Compare  “fully-formulated” catalysts at manufacturers

Unable to share all information
• Study deactivation mechanism fundamentally

− Complements engine dynamometer experiments and 
long-term aging

− Investigate activity and its relationship to catalyst 
components that are not feasible on the engine

• Phosphorous, Thermal Aging and 
Sulfation/Desulfation all studied independently
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Experimental

• Evaluate thermal aging 
independent of sulfur
− No sulfur on initial catalyst
− Determine T effects up to 900°C

• Compare thermal to deactivation 
from sulfur poisoning and de-S

• Multiple analytical techniques
− X-ray Diffraction: morphology changes
− DRIFTS: surface species investigation
− Physisorption/Chemisorption: 

Pt size, surface area, LNT capacity
− Mass Spectrometry: Activity, 

TPR, TPD

Kinetics and Characterization

Surface Chemistry

Bulk morphology
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Reactor Designs Optimized for LNT Studies
• Reactors allow key LNT measurements

− fast switching enabled on microreactor and DRIFTS reactor
equibaric considerations

− pulse chemisorption for faster Pt dispersion measurements
− Allows meaningful short cycle measurements
− Mass spectrometer enabled

Powder reactor

Turbo Pump for BET

H2O 
bath

Lean-rich 
switching valve

MS 
port

Catalyst
reactor

Barrel 
Ellipse

H2O 
bath

Lean-rich 
switching valve

RH  
sensor

MS 
port
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Thermal Aging Study
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Experimental Protocol for Thermal Aging
• Studied Two model powder catalysts

− Pt/K/Al2O3: 1% Pt, 8% K2CO3 on γ-Al2O3

− Pt/Ba/Al2O3: 1% Pt, 20% BaO on γ-Al2O3

− ~200 g Pt/ft3 equivalent 
• Compared Ba-based fully-formulated catalyst

− Washcoated catalyst was ground and sieved for reactor
• Aged at 500-900°C

− Cycle between lean and rich (20h)
• Characterized effects after each temperature

− Surface Area
− NOx storage at 15 minutes at 250°C
− Pt size 
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Model Catalysts Mimic Fully-Formulated 
Catalyst
• All catalysts show 

similar deactivation after 
760 and 900°C

• Fully formulated catalyst 
shows better tolerance 
than Pt/Ba/Al2O3
− Especially for NO 

storage
• Surface area sustained

− Model Ba does 
decrease compared to 
fully formulated

demonstrates effect 
of stabilizing agent 

• Pt sintering severe at 
760°C

• Significant drop in NOxstorage after 760°C
• Non-normalized rates 

available on request
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Thermal Aging Severely Inhibits Activity 
on Fully-Formulated Catalyst 

• Activity measurements 
needed for effect of Pt 
sintering on regeneration

• Short Cycle:
− 60 s lean, 5 s rich (~fuel 

penalty 8%)
− Space Velocity: 45k h-1

− Lean: 300ppm NO, 10 % 
O2, 5% CO2, 5% H2O in 
Argon (Φ~0.5)

− Rich: 0.9% CO, 0.54% H2, 
5% CO2, 5% H2O in Argon 
(Φ~1.04)

• NOx conversion at 250°C 
drops by 67% after 900°C
− Un-recoverable loss

Fully-Formulated Catalyst Activity (30 Cycle Avg)
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Sulfur Poisoning 
and

Desulfation
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Experimental Protocol for Sulfation
• Two model powder catalysts studied

− Pt/K/Al2O3: 1% Pt, 8% K2CO3 on γ-Al2O3
− Pt/Ba/Al2O3: 1% Pt, 20% BaO on γ-Al2O3
− ~200 g Pt/ft3 equivalent 

• Sulfate heavily at 250°C
− Lean conditions with 130 ppm SO2

• Evaluate activity and Characterize
− BET, NOx storage, Pt exposed, DRIFTS behavior
− Space Velocity: 45k h-1

− Lean: 300ppm NO, 10 % O2, 5% CO2, 5% H2O in Argon (Φ~0.5)
− Rich: 0.9% CO, 0.54% H2, 5% CO2, 5% H2O in Argon (Φ~1.04)
− Total Storage: Dry H2 purge followed by dry lean operation
− Long Cycle: 15 minutes lean, 10 minutes rich
− Short Cycle: 60 s lean, 5 s rich (~fuel penalty 8%)

• Desulfate at 500°C and repeat evaluation
• Desulfate at 760°C and repeat evaluation
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Sulfur Deactiavtion is Approximately 
Linear on all Catalysts
• Deactivation is 

linear after initially 
steep decline

• Deactivation is 
slower on K-based 
catalyst
− May only indicate 

higher maximum 
capacity 

• Both Ba-based 
catalyst show 
similar behavior
− Model catalyst 

deactivates faster

Long Cycle Storage
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Desulfation at 760°C Releases an 
Undetected Form of Sulfur

• Pt/Ba/Al2O3: little detectable H2S 
and SOx above 500°C

• Large Reaction with H2 doubles 
NOx Capacity
− Oxygen source most likely 

sulfates, but product not detected 
with mass spectrometer

• Desulfation Reactions
4H2 + BaSO4 H2S + 3H2O + BaO

H2 + BaSO4 SO2 +  H2O + BaO
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Pt/K/Al2O3 Also Does not Have Sulfur 
Equivalent to H2 Reacted

• Another reaction is probably 
responsible for desulfation
− Non H2S, SOx product
− Elemental S (Claus rxn) possible

• Lack of S in Effluent does not
indicate De-S is complete

• Desulfation Reactions
4H2 + K2SO4 H2S + 3H2O + K2O

H2 + K2SO4 SO2 +  H2O + K2O
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Fully-Formulated Catalyst 
Shows Similar Effects
• Sulfur discrepancy above 500C 

still apparent
− Significantly more H2S observed 

below 500C
• 80% Short cycle conversion 

nearly completely recovered
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Desulfation Recovers Fast-Storage Sites
• Some gains after each 

desulfation 
• NOx storage impacted the most

− Total storage still low after 
desulfation 

− Long cycle analogous to total 
storage

15m lean/10m rich
• Short Cycle is analogous to 

typical engine
− 60s lean/5s rich
− Recovered 95% of activity
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DRIFTS: Desulfation Incomplete
• Long desulfation at 760°C does not 

fully remove S on either LNT
• Pt-Al2O3 sulfate have different 

absorptions
− Peaks at 1390, 1200, 1080 cm-1

− Sulfur removal below 500°C not 
necessarily Al2O3 based

• Suggests Ba relies significantly on 
slow storage sites versus surface 
sites (even during fast cycling)
− importance of adsorber dispersion
− Surface sulfates more quickly 

removed 

Sulfated
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De-S at 760°C

De-S at 500°C
Pt/K/Al2O3

sulfates
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Effects from Thermal Aging Primary 
Deactivation above ~700°C 
• Catalysts desulfated at 760°C (1-2h) have similar capacity to thermally 

aged catalysts (20h)
− Even though they are not fully desulfated
− Activity tests needed to verify effect

• Sulfur dominates deactivation at 500°C
• Overheating is worse than leaving some Sulfur
• Suggests long, mild desulfation has benefits to short, harsh strategy
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Rapid Aging Protocol:

Oil-Borne Agents
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Approach - Accelerated Aging
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ZDDP in Lube Oil Inhibits Catalyst 
with P and S

• P impacts more in exhaust-born oil 
− ~120% rise in light-off Temp w/3g ZDDP

• Sulfur impacts more in fuel-born oil
− ~80% rise in light-off Temp w/3g ZDDP

• More details available:  
− SAE 2005-01-1758; buntingbg@ornl.gov P

Added in fuel

CATALYST
Sulfur 

collection 
efficiency, %

Phosphorous 
collection 

efficiency, %

Zinc collection 
efficiency, %

INTAKE 
MANIFOLD 
INJECTION

11.26 10.40 0.08

EXHAUST 
MANIFOLD 
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16.47 28.93 9.76

DISSOLVED IN 
FUEL 20.41 12.04 0.16

S

Added at intake

SS PP

Added in exhaust
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Summary
• Thermal aging is primary mechanism of LNT deactivation 
• Desulfation is slow 

− most likely never results in 
a S-free catalyst

− Surface sulfates 
removed quickly

− Bulk Sulfates linger
− However, significant 

activity is restored
• H2S and SO2 are not only 

desulfation products
• Moderate desulfation

key to LNT longevity
• S and P from oil have 

shown effect on DOC
− LNTs also susceptible
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Future Work
• Shift Focus to DRIFTS-based analysis, especially with 

respect to desulfation
• Expand temperature range (200 and 500°C)
• Further characterize catalysts with respect to sulfation 

− Does strongly bound sulfur poison rapid sites quickly? Or is it stable?
• Sulfate catalysts and titrate desulfation

− Goal is to establish method for removing sulfur in near Pt
Establish with detailed characterization
Work with modeling effort to infer rate of surface migration 

• Make thermally aged catalysts available for modeling effort
− Establish criteria for Pt-size, Adsorber surface area, and 

relative proximities and their effects on LNT kinetics 
− How well does activity correlate with Adsorber/PM interface

• Finalize in-situ DRIFTS reactor for washcoated samples 
− Enables translation along channel
− Successful design reasonably simulates flow/temperature
− Incorporate spatiotemporal diagnostics of Spaci-MS 
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Recent Publications and 
Upcoming Presentations
• “Quantification of the in-situ DRIFT Spectra of 

Pt/K/gamma-Al2O3 NOx Adsorber Catalysts”, Appl. 
Catal. B, 58:3-4 (2005) 245.

• “Quantified NOX adsorption on Pt/K/gamma-Al2O3
and the Effects of CO2 and H2O”, Appl. Catal. B, 
58:3-4 (2005) 255.

• “NOX Adsorption Routes on Pt/K/Al2O3”, will be 
presented at 19th NACS meeting (Wednesday)
− Selected for publication in Catalysis Today

• Poster Presentation of LNT deactivation and 
ZDDP Poisoning at 19th NAM (Tuesday night)

• Contact: tjtoops@ornl.gov, (865)-946-1207

mailto:tjtoops@ornl.gov
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Engine Aging Procedure
• Temperature and cycle times generated from 

industrial survey
• Performance evaluations under similar conditions

− 4 sec rich (target 13:1 A/F)
− 20 sec lean
− 60K h-1 SV
− 400 deg.C
− 800 ppm NOX

• Engine aging
− 400 C base temperature
− 120 sec lean
− 30-120 sec rich

Switched to lean when target temperature rich
Large exotherm (100 C) after lean transition

700 deg.C 800 deg.C 900 deg.C
20 80 X X X
6 24 X X X
2 8 X X X

HOURS 
AGING

NUMBER 
OF AGING 
CYCLES

TARGET TEMPERATURE
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Engines Exhibits Exotherms in Aging Cycle
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NOx Conversion Decreases Rapidly

Fresh Catalyst
Surface Area: 32 m2/g
Pt/Rh size: 1-4 nm
NOx storage: 126 μmols/g

4.5 μmols/m2

Aged Catalyst (46 cycles) 
Surface Area: 17 m2/g
Pt/Rh size: 7-20 nm
NOx storage:  78 μmols/g

4.8 μmols/m2

• NOx Activity drops precipitously
− 43% decrease in conversion after 10 cycles
− 54% after 46 cycles

• Surface Area and Pt/Rh size Affected

Cycles
100 3020 5040

N
O

x
C

on
ve

rs
io

n 
(%

)

20

40

60

80

0

100



28

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Powder Reactor Storage Capacity Drop 
Primarily a Surface Area Effect 
• Surface Area  and total NOx uptake per gram drops for 800C
• Normalized uptake per m2 stays constant
• Pt/Rh size relates to kinetics and future tests
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Summary of Literature*

• Even low Sulfur fuels will eventually completely 
deactivate LNTs if unmitigated

• Sulfur affects both precious metals and adsorber
− Sulfates form more readily in lean conditions
− Poison precious metals more effectively in rich

• H2S, SO2, and CO-S all effectively poison LNTS
• Catalyst components affect desulfation 

Temperature
− Ba-based LNTs desorb at lower T than K-based

• H2 is most effective desulfation reductant
− Tests with CO require H2O for effective de-S (WGS)

* - references available on request
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• Are slow 
adsorption sites 
bulk or just 
sites away from 
Pt?

Pt
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Pt/K/Al2O3 Sulfation with DRIFTS
• Long Cycling at 250°C with 100 ppm SO2 in lean flow
• Nitrates and Sulfates initially compete for sites
• Sulfates dominate after a couple of cycles: 1100, 1050 cm-1

• CO adsorbed on Pt 

Movie of long lean to 
rich cycle on K with 

H2O and CO2

Movie of long lean to 
rich cycle on K with 

H2O and CO2
plus SO2

Lean Spectra detailing 
peak assignments

Rich Spectra detailing 
peak assignments
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Engine also Suggests Greater Deactivation from 
Thermal Aging
• Engine Background (Jim Parks Talk)

− Barium-Based LNT; heavily sulfated (equivalent of 7k miles)
− Engine desulfated for 10-20 minutes at 500-800°C (50°C increments)

• Heavily desulfating with temperature excursions greater than 
900°C only recovered 60% of initial activity
− The 40% reduction in activity is permanent
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