Lean NO_x Trap Deactivation

Todd J. Toops Oak Ridge National Laboratory

Collaborators:

ORNL: Jae-Soon Choi, D. Barton Smith, William P. Partridge, Stuart Daw, Kalyana Chakravarthy, Brian West, Shean Huff, Bruce Bunting, Karren More and Jim Parks

University of Tennessee: Ke Nguyen, Scott Eaton and Ajit Gopinath

May 2005

DOE Managers: Gurpreet Singh and Ken Howden

Background

- LNTs inhibited by poisoning agents
 - Lube phosphorous
 - Sulfur inhibition and its high temperature removal
- Need a better understanding of the deactivation mechanisms that result from treating catalyst
 - What impact do oil-born agents have on catalysts?
 - What temperature does de-S occur?
 - When is the catalyst morphology affected?
 - How does the material impact the chemistry?
- Transfer this information to teams to:
 - improve the material
 - improve the desulfation methods
 - improve simulation of the processes

Approach

- Effort is pre-competitive
 - Use model catalysts for majority of study
 - Allows sharing of all information
 - Compare "fully-formulated" catalysts at manufacturers
 - Unable to share all information
- Study deactivation mechanism fundamentally
 - Complements engine dynamometer experiments and long-term aging
 - Investigate activity and its relationship to catalyst components that are not feasible on the engine
- Phosphorous, Thermal Aging and Sulfation/Desulfation all studied independently

Experimental

- Evaluate thermal aging independent of sulfur
 - No sulfur on initial catalyst
 - Determine T effects up to 900°C
- Compare thermal to deactivation from sulfur poisoning and de-S
- Multiple analytical techniques
 - X-ray Diffraction: morphology changes
 - DRIFTS: surface species investigation
 - Physisorption/Chemisorption:
 Pt size, surface area, LNT capacity
 - Mass Spectrometry: Activity, TPR, TPD

Reactor Designs Optimized for LNT Studies

- Reactors allow key LNT measurements
 - fast switching enabled on microreactor and DRIFTS reactor
 - equibaric considerations
 - pulse chemisorption for faster Pt dispersion measurements
 - Allows meaningful short cycle measurements
 - Mass spectrometer enabled

Thermal Aging Study

Experimental Protocol for Thermal Aging

- Studied Two model powder catalysts
 - $Pt/K/Al_2O_3$: 1% Pt, 8% K_2CO_3 on γ -Al_2O_3
 - $Pt/Ba/Al_2O_3$: 1% Pt, 20% BaO on γ -Al_2O₃
 - ~200 g Pt/ft³ equivalent
- Compared Ba-based fully-formulated catalyst
 - Washcoated catalyst was ground and sieved for reactor
- Aged at 500-900°C
 - Cycle between lean and rich (20h)
- Characterized effects after each temperature
 - Surface Area
 - NO_x storage at 15 minutes at 250°C
 - Pt size

- All catalysts show similar deactivation after 760 and 900°C
- Fully formulated catalyst shows better tolerance than Pt/Ba/Al₂O₃
 - Especially for NO storage
- Surface area sustained
 - Model Ba does decrease compared to fully formulated
 - demonstrates effect of stabilizing agent
- Pt sintering severe at 760°C
- Significant drop in NO_x storage after 760°C
- Non-normalized rates
 available on request

JT-BATTELL

Thermal Aging Severely Inhibits Activity on Fully-Formulated Catalyst

Activity measurements needed for effect of Pt sintering on regeneration

Short Cycle:

- 60 s lean, 5 s rich (~fuel penalty 8%)
- Space Velocity: 45k h⁻¹
- Lean: 300ppm NO, 10 % O_2 , 5% CO₂, 5% H₂O in Argon (Φ ~0.5)
- Rich: 0.9% CO, 0.54% H_2 , 5% CO₂, 5% H_2 O in Argon (Φ ~1.04)
- NO_x conversion at 250°C drops by 67% after 900°C
 - Un-recoverable loss

Sulfur Poisoning and Desulfation

Experimental Protocol for Sulfation

- Two model powder catalysts studied
 - $Pt/K/Al_2O_3$: 1% Pt, 8% K_2CO_3 on γ -Al_2O_3
 - $Pt/Ba/Al_2O_3$: 1% Pt, 20% BaO on γ -Al_2O_3
 - ~200 g Pt/ft³ equivalent
- Sulfate heavily at 250°C
 - Lean conditions with 130 ppm SO₂
- Evaluate activity and Characterize
 - BET, NO_x storage, Pt exposed, DRIFTS behavior
 - Space Velocity: 45k h⁻¹
 - Lean: 300ppm NO, 10 % O_2 , 5% CO_2 , 5% H_2O in Argon (Φ ~0.5)
 - Rich: 0.9% CO, 0.54% H_2 , 5% CO₂, 5% H_2 O in Argon (Φ ~1.04)
 - Total Storage: Dry H₂ purge followed by dry lean operation
 - Long Cycle: 15 minutes lean, 10 minutes rich
 - Short Cycle: 60 s lean, 5 s rich (~fuel penalty 8%)
- Desulfate at 500°C and repeat evaluation
- Desulfate at 760°C and repeat evaluation

Sulfur Deactiavtion is Approximately Linear on all Catalysts

- Deactivation is linear after initially steep decline
- Deactivation is slower on K-based catalyst
 - May only indicate higher maximum capacity
- Both Ba-based catalyst show similar behavior
 - Model catalyst deactivates faster

Desulfation at 760°C Releases an Undetected Form of Sulfur

- Pt/Ba/Al₂O₃: little detectable H₂S and SO_x above 500°C
- Large Reaction with H₂ doubles NO_x Capacity
 - Oxygen source most likely sulfates, but product not detected with mass spectrometer
- Desulfation Reactions
 - $4H_2 + BaSO_4 \rightarrow H_2S + 3H_2O + BaO$ $H_2 + BaSO_4 \rightarrow SO_2 + H_2O + BaO$

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Pt/K/Al₂O₃ Also Does not Have Sulfur Equivalent to H₂ Reacted

- Another reaction is probably responsible for desulfation
 - Non H₂S, SO_x product
 - Elemental S (Claus rxn) possible
- Lack of S in Effluent does <u>not</u> indicate De-S is complete
- Desulfation Reactions $4H_2 + K_2SO_4 \rightarrow H_2S + 3H_2O + K_2O$ $H_2 + K_2SO_4 \rightarrow SO_2 + H_2O + K_2O$

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Fully-Formulated CatalystShows Similar Effects

Sulfur discrepancy above 500C still apparent

Desulfation Recovers Fast-Storage Sites

- Some gains after each desulfation
- NO_x storage impacted the most
 - Total storage still low after desulfation
 - Long cycle analogous to total storage
 - 15m lean/10m rich
- Short Cycle is analogous to typical engine
 - 60s lean/5s rich
 - Recovered 95% of activity

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

-BATTELL

DRIFTS: Desulfation Incomplete

- Long desulfation at 760°C does not fully remove S on either LNT
- Pt-Al₂O₃ sulfate have different absorptions
 - Peaks at 1390, 1200, 1080 cm⁻¹
 - Sulfur removal below 500°C not necessarily Al₂O₃ based
- Suggests Ba relies significantly on slow storage sites versus surface sites (even during fast cycling)
 - importance of adsorber dispersion
 - Surface sulfates more quickly removed

Effects from Thermal Aging Primary Deactivation above ~700°C

- Catalysts desulfated at 760°C (1-2h) have similar capacity to thermally aged catalysts (20h)
 - Even though they are not fully desulfated
 - Activity tests needed to verify effect
- Sulfur dominates deactivation at 500°C
- Overheating is worse than leaving some Sulfur
- Suggests long, mild desulfation has benefits to short, harsh strategy

Rapid Aging Protocol: Oil-Borne Agents

ZDDP in Lube Oil Inhibits Catalyst with P and S Added at intake

CATALYST	Sulfur collection efficiency, %	Phosphorous collection efficiency, %	Zinc collection efficiency, %
INTAKE MANIFOLD INJECTION	11.26	10.40	0.08
EXHAUST MANIFOLD INJECTION	16.47	28.93	9.76
DISSOLVED IN FUEL	20.41	12.04	0.16

- P impacts more in exhaust-born oil
 - ~ ~120% rise in light-off Temp w/3g ZDDP
- Sulfur impacts more in fuel-born oil
 - ~ ~80% rise in light-off Temp w/3g ZDDP
- More details available:
 - SAE 2005-01-1758; buntingbg@ornl.gov

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Added in exhaust

Added in fuel

JT-BATTELL

Summary

- Thermal aging is primary mechanism of LNT deactivation
- Desulfation is slow
 - most likely never results in a S-free catalyst
 - Surface sulfates removed quickly
 - Bulk Sulfates linger
 - However, significant activity is restored
- H₂S and SO₂ are not only desulfation products
- Moderate desulfation key to LNT longevity
- S and P from oil have shown effect on DOC
 - LNTs also susceptible

Future Work

- Shift Focus to DRIFTS-based analysis, especially with respect to desulfation
- Expand temperature range (200 and 500°C)
- Further characterize catalysts with respect to sulfation
 - Does strongly bound sulfur poison rapid sites quickly? Or is it stable?
- Sulfate catalysts and titrate desulfation
 - Goal is to establish method for removing sulfur in near Pt
 - Establish with detailed characterization
 - Work with modeling effort to infer rate of surface migration
- Make thermally aged catalysts available for modeling effort
 - Establish criteria for Pt-size, Adsorber surface area, and relative proximities and their effects on LNT kinetics
 - How well does activity correlate with Adsorber/PM interface
- Finalize *in-situ* DRIFTS reactor for washcoated samples
 - Enables translation along channel
 - Successful design reasonably simulates flow/temperature
 - Incorporate spatiotemporal diagnostics of Spaci-MS

Recent Publications and Upcoming Presentations

- "Quantification of the *in-situ* DRIFT Spectra of Pt/K/gamma-Al₂O₃ NO_x Adsorber Catalysts", Appl. Catal. B, 58:3-4 (2005) 245.
- "Quantified NO_X adsorption on Pt/K/gamma-Al₂O₃ and the Effects of CO₂ and H₂O", Appl. Catal. B, 58:3-4 (2005) 255.
- "NO_X Adsorption Routes on Pt/K/Al₂O₃", will be presented at 19th NACS meeting (Wednesday)

Selected for publication in Catalysis Today

- Poster Presentation of LNT deactivation and ZDDP Poisoning at 19th NAM (Tuesday night)
- Contact: <u>tjtoops@ornl.gov</u>, (865)-946-1207

Engine Aging Procedure

- Temperature and cycle times generated from industrial survey
- Performance evaluations under similar conditions
 - 4 sec rich (target 13:1 A/F)
 - 20 sec lean
 - 60K h⁻¹ SV
 - 400 deg.C
 - 800 ppm NO_X
- Engine aging
 - 400 C base temperature
 - 120 sec lean
 - 30-120 sec rich
 - Switched to lean when target temperature rich
 - Large exotherm (100 C) after lean transition

HOURS	NUMBER OF AGING CYCLES	TARGET TEMPERATURE		
		700 deg.C	800 deg.C	900 deg.C
20	80	X	X	X
6	24	X	X	Х
2	8	X	Х	Х

Engines Exhibits Exotherms in Aging Cycle

Typical Engine Lean / Rich Aging Cycle

- 800C target with a 920C exotherm

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

CO2

NO_x Conversion Decreases Rapidly

- NO_x Activity drops precipitously
 - 43% decrease in conversion after 10 cycles
 - 54% after 46 cycles
- Surface Area and Pt/Rh size Affected

Powder Reactor Storage Capacity Drop Primarily a Surface Area Effect Surface Area and total NO_x uptake per gram drops for 800C

- Normalized uptake per m² stays constant
- Pt/Rh size relates to kinetics and future tests

TEL

Summary of Literature*

- Even low Sulfur fuels will eventually completely deactivate LNTs if unmitigated
- Sulfur affects both precious metals and adsorber
 - Sulfates form more readily in lean conditions
 - Poison precious metals more effectively in rich
- H₂S, SO₂, and CO-S all effectively poison LNTS
- Catalyst components affect desulfation
 Temperature
 - Ba-based LNTs desorb at lower T than K-based
- H₂ is most effective desulfation reductant
 - Tests with CO require H₂O for effective de-S (WGS)
- * references available on request

Are slow

 adsorption sites
 bulk or just
 sites away from
 Pt?

Pt/K/Al₂O₃ Sulfation with DRIFTS

- Long Cycling at 250°C with 100 ppm SO₂ in lean flow
- Nitrates and Sulfates initially compete for sites
- Sulfates dominate after a couple of cycles: 1100, 1050 cm⁻¹
- CO adsorbed on Pt

Lean Spectra detailing peak assignments	Movie of long lean to rich cycle on K with H ₂ O and CO ₂
Rich Spectra detailing peak assignments	Movie of long lean to rich cycle on K with H_2O and CO_2 plus SO_2

Engine also Suggests Greater Deactivation from Thermal Aging

- Engine Background (Jim Parks Talk)
 - Barium-Based LNT; heavily sulfated (equivalent of 7k miles)
 - Engine desulfated for 10-20 minutes at 500-800°C (50°C increments)
- Heavily desulfating with temperature excursions greater than 900°C only recovered 60% of initial activity
 - The 40% reduction in activity is permanent

